Vote for your favorite mineral in #MinCup25! - Topaz vs. Kyanite
It's a battle of high-pressure colourful beauties of #topaz vs #kyanite. Which can stand the heat of round 1?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Barber, D. J., Khan, M. Riaz (1987) Composition-induced microstructures in rhombohedral carbonates. Mineralogical Magazine, 51 (359) 71-86 doi:10.1180/minmag.1987.051.359.07

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleComposition-induced microstructures in rhombohedral carbonates
JournalMineralogical MagazineISSN0026-461X
AuthorsBarber, D. J.Author
Khan, M. RiazAuthor
Year1987 (March)Volume51
Issue359
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_51/51-359-71.pdf+
DOIdoi:10.1180/minmag.1987.051.359.07Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID1348Long-form Identifiermindat:1:5:1348:6
GUID0
Full ReferenceBarber, D. J., Khan, M. Riaz (1987) Composition-induced microstructures in rhombohedral carbonates. Mineralogical Magazine, 51 (359) 71-86 doi:10.1180/minmag.1987.051.359.07
Plain TextBarber, D. J., Khan, M. Riaz (1987) Composition-induced microstructures in rhombohedral carbonates. Mineralogical Magazine, 51 (359) 71-86 doi:10.1180/minmag.1987.051.359.07
In(1987, March) Mineralogical Magazine Vol. 51 (359) Mineralogical Society
Abstract/NotesAbstractRecent TEM observations of two-phase microstructures and associated crystal defects in selected, rare dolomites have been extended to calcite-structured (R3̄c) carbonates and to other natural and synthetic carbonates that crystallize with the dolomite (R3̄) structure. The samples included siderites (FeCO3), smithsonites (ZnCO3), ankerites (Ca[Mg,Fe](CO3)2), and kutnahorites (Ca[Mn,Fe](CO3)2).TEM methods show that the forms of second phases which result from the presence of common, divalent, metallic impurities are morphologically similar in R3̄c and R3̄ carbonates and occur more widely than hitherto realized. The most common form consists of thin ribbons of second phase which are coherent with and have the same crystallographic orientation as the host carbonate. Another form of microstructure, manifest as modulations in diffraction contrast, appears to be associated with incipient breakdown of single-phase carbonate. The results of extensive TEM/EDS microanalyses show that in siderite and ankerite the formation of ribbons is promoted by Ca impurity or Ca excess (with respect to R3̄c stoichiometry). In smithsonite, Cu and Ca impurities can play similar roles in relation to modulated microstructures. In kutnahorites, the perfection of grains and the absence of second-phase effects is strongly dependent on the ratio of Fe to Mn but is also affected by Ca in excess of the stoichiometric requirement. Electron diffraction results from several of the minerals show c-type spots, which can be interpreted as indicating ordering within basal layers of cations.The results show that, by correlating analytical TEM data with the study of second phases and incipient two-phase microstructures, it should be possible to determine the limits of solid solubility in carbonate systems.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 13, 2025 11:09:42
Go to top of page