Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Bart, Philip J., Tulaczyk, Slawek (2020) A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream. Geology, 48 (4) 313-317 doi:10.1130/g46916.1

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream
JournalGeology
AuthorsBart, Philip J.Author
Tulaczyk, SlawekAuthor
Year2020 (April 1)Volume48
Issue4
PublisherGeological Society of America
DOIdoi:10.1130/g46916.1Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID144123Long-form Identifiermindat:1:5:144123:3
GUID0
Full ReferenceBart, Philip J., Tulaczyk, Slawek (2020) A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream. Geology, 48 (4) 313-317 doi:10.1130/g46916.1
Plain TextBart, Philip J., Tulaczyk, Slawek (2020) A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream. Geology, 48 (4) 313-317 doi:10.1130/g46916.1
In(2020, April) Geology Vol. 48 (4) Geological Society of America
Abstract/NotesAbstract
For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment flux of Bindschadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS velocity averaged 500 ± 120 m a−1. At a finer resolution, the data suggest two stages of ice stream flow. During the first 2400 ± 400 years of a grounding-zone stillstand, ice stream flow averaged 200 ± 90 m a−1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., flow accelerated to 1350 ± 580 m a−1. The estimated ice volume discharge after breakup exceeds the balance velocity by a factor of two and implies ice mass imbalance of −40 Gt a−1 just before the grounding zone retreated >200 km. We interpret that the paleo-BIS maintained sustainable discharge throughout the grounding-zone stillstand first due to the buttressing effect of its fringing ice shelf and then later (i.e., after ice-shelf breakup) due to the stabilizing effects of grounding-zone wedge aggradation. Major paleo–ice stream retreat, shortly after the ice-shelf breakup that triggered the inferred ice flow acceleration, substantiates the current concerns about rapid, near-future retreat of major glaciers in the Amundsen Sea sector where Pine Island and Thwaites Glaciers are already experiencing ice-shelf instability and grounding-zone retreat that have triggered upstream-propagating thinning and ice acceleration.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 20, 2025 15:56:00
Go to top of page