Reference Type | Journal (article/letter/editorial) |
---|
Title | A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems |
---|
Journal | Information Sciences |
---|
Authors | Yang, Zan | Author |
---|
Qiu, Haobo | Author |
Gao, Liang | Author |
Xu, Danyang | Author |
Liu, Yuanhao | Author |
Year | 2023 (January) | Volume | 619 |
---|
Publisher | Elsevier BV |
---|
DOI | doi:10.1016/j.ins.2022.11.021Search in ResearchGate |
---|
| Generate Citation Formats |
Mindat Ref. ID | 15511387 | Long-form Identifier | mindat:1:5:15511387:1 |
---|
|
GUID | 0 |
---|
Full Reference | Yang, Zan, Qiu, Haobo, Gao, Liang, Xu, Danyang, Liu, Yuanhao (2023) A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems. Information Sciences, 619. 491-508 doi:10.1016/j.ins.2022.11.021 |
---|
Plain Text | Yang, Zan, Qiu, Haobo, Gao, Liang, Xu, Danyang, Liu, Yuanhao (2023) A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems. Information Sciences, 619. 491-508 doi:10.1016/j.ins.2022.11.021 |
---|
In | (2023) Information Sciences Vol. 619. Elsevier BV |
---|
These are possibly similar items as determined by title/reference text matching only.