Vote for your favorite mineral in #MinCup25! - Taenite vs. Nontronite
It's a mineral found mostly in the farthest reaches of space vs one so common an exhaustive list of localities is nigh impossible as alloy #taenite faces off against clay #nontronite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zhang, Ying, Gui, Jianing, Wang, Dan, Mao, Junjun, Zhang, Chenchen, Li, Fengwang (2023) A tandem effect of atomically isolated copper–nitrogen sites and copper clusters enhances CO2 electroreduction to ethylene. Nanoscale, 15 (3) 1092-1098 doi:10.1039/d2nr06009d

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA tandem effect of atomically isolated copper–nitrogen sites and copper clusters enhances CO2 electroreduction to ethylene
JournalNanoscale
AuthorsZhang, YingAuthor
Gui, JianingAuthor
Wang, DanAuthor
Mao, JunjunAuthor
Zhang, ChenchenAuthor
Li, FengwangAuthor
Year2023Volume15
Issue3
PublisherRoyal Society of Chemistry (RSC)
DOIdoi:10.1039/d2nr06009dSearch in ResearchGate
Generate Citation Formats
Mindat Ref. ID15673603Long-form Identifiermindat:1:5:15673603:1
GUID0
Full ReferenceZhang, Ying, Gui, Jianing, Wang, Dan, Mao, Junjun, Zhang, Chenchen, Li, Fengwang (2023) A tandem effect of atomically isolated copper–nitrogen sites and copper clusters enhances CO2 electroreduction to ethylene. Nanoscale, 15 (3) 1092-1098 doi:10.1039/d2nr06009d
Plain TextZhang, Ying, Gui, Jianing, Wang, Dan, Mao, Junjun, Zhang, Chenchen, Li, Fengwang (2023) A tandem effect of atomically isolated copper–nitrogen sites and copper clusters enhances CO2 electroreduction to ethylene. Nanoscale, 15 (3) 1092-1098 doi:10.1039/d2nr06009d
In(2023) Nanoscale Vol. 15 (3) Royal Society of Chemistry (RSC)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 15, 2025 12:05:02
Go to top of page