Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Liu, Qiang, Jiang, Quan, Zhou, Zhenhua, Xin, Jie, Huang, Mojia (2023) The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing. Construction and Building Materials, 369. 130594 doi:10.1016/j.conbuildmat.2023.130594

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing
JournalConstruction and Building Materials
AuthorsLiu, QiangAuthor
Jiang, QuanAuthor
Zhou, ZhenhuaAuthor
Xin, JieAuthor
Huang, MojiaAuthor
Year2023 (March)Volume369
PublisherElsevier BV
DOIdoi:10.1016/j.conbuildmat.2023.130594Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15693550Long-form Identifiermindat:1:5:15693550:2
GUID0
Full ReferenceLiu, Qiang, Jiang, Quan, Zhou, Zhenhua, Xin, Jie, Huang, Mojia (2023) The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing. Construction and Building Materials, 369. 130594 doi:10.1016/j.conbuildmat.2023.130594
Plain TextLiu, Qiang, Jiang, Quan, Zhou, Zhenhua, Xin, Jie, Huang, Mojia (2023) The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing. Construction and Building Materials, 369. 130594 doi:10.1016/j.conbuildmat.2023.130594
In(2023) Construction and Building Materials Vol. 369. Elsevier BV


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 24, 2025 19:37:26
Go to top of page