Vote for your favorite mineral in #MinCup25! - Kosmochlor vs. Azurite
It's a battle of green vs blue as rare but vibrant chromium-bearing kosmochlor up against the deep blue copper alteration mineral azurite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Yang, Y., Kost-Alimova, M., Ingvarsson, S., Qianhui, Q., Kiss, H., Szeles, A., Kholodnyuk, I., Cuthbert, A., Klein, G., Imreh, S. (2001) Similar regions of human chromosome 3 are eliminated from or retained in human/human and human/mouse microcell hybrids during tumor growth in severe combined immunodeficient (SCID) mice. Proceedings of the National Academy of Sciences, 98 (3) 1136-1141 doi:10.1073/pnas.98.3.1136

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleSimilar regions of human chromosome 3 are eliminated from or retained in human/human and human/mouse microcell hybrids during tumor growth in severe combined immunodeficient (SCID) mice
JournalProceedings of the National Academy of Sciences
AuthorsYang, Y.Author
Kost-Alimova, M.Author
Ingvarsson, S.Author
Qianhui, Q.Author
Kiss, H.Author
Szeles, A.Author
Kholodnyuk, I.Author
Cuthbert, A.Author
Klein, G.Author
Imreh, S.Author
Year2001 (January 30)Volume98
Issue3
PublisherProceedings of the National Academy of Sciences
DOIdoi:10.1073/pnas.98.3.1136Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID1666066Long-form Identifiermindat:1:5:1666066:7
GUID0
Full ReferenceYang, Y., Kost-Alimova, M., Ingvarsson, S., Qianhui, Q., Kiss, H., Szeles, A., Kholodnyuk, I., Cuthbert, A., Klein, G., Imreh, S. (2001) Similar regions of human chromosome 3 are eliminated from or retained in human/human and human/mouse microcell hybrids during tumor growth in severe combined immunodeficient (SCID) mice. Proceedings of the National Academy of Sciences, 98 (3) 1136-1141 doi:10.1073/pnas.98.3.1136
Plain TextYang, Y., Kost-Alimova, M., Ingvarsson, S., Qianhui, Q., Kiss, H., Szeles, A., Kholodnyuk, I., Cuthbert, A., Klein, G., Imreh, S. (2001) Similar regions of human chromosome 3 are eliminated from or retained in human/human and human/mouse microcell hybrids during tumor growth in severe combined immunodeficient (SCID) mice. Proceedings of the National Academy of Sciences, 98 (3) 1136-1141 doi:10.1073/pnas.98.3.1136
In(2001, January) Proceedings of the National Academy of Sciences Vol. 98 (3) Proceedings of the National Academy of Sciences


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 9, 2025 09:13:46
Go to top of page