Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Macleod, G., Hall, A. J., Fallick, A. E. (1990) An applied mineralogical investigation of concrete degradation in a major concrete road bridge. Mineralogical Magazine, 54 (377) 637-644 doi:10.1180/minmag.1990.054.377.17

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleAn applied mineralogical investigation of concrete degradation in a major concrete road bridge
JournalMineralogical MagazineISSN0026-461X
AuthorsMacleod, G.Author
Hall, A. J.Author
Fallick, A. E.Author
Year1990 (December)Volume54
Issue377
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_54/54-377-637.pdf+
DOIdoi:10.1180/minmag.1990.054.377.17Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID1672Long-form Identifiermindat:1:5:1672:2
GUID0
Full ReferenceMacleod, G., Hall, A. J., Fallick, A. E. (1990) An applied mineralogical investigation of concrete degradation in a major concrete road bridge. Mineralogical Magazine, 54 (377) 637-644 doi:10.1180/minmag.1990.054.377.17
Plain TextMacleod, G., Hall, A. J., Fallick, A. E. (1990) An applied mineralogical investigation of concrete degradation in a major concrete road bridge. Mineralogical Magazine, 54 (377) 637-644 doi:10.1180/minmag.1990.054.377.17
In(1990, December) Mineralogical Magazine Vol. 54 (377) Mineralogical Society
Abstract/NotesAbstractA core of concrete taken from a major road bridge in the Strathclyde Region, Scotland, has been subjected to an applied mineralogical investigation, which involved stable isotope analysis, petrography, X-ray diffraction and scanning electron microscopy.The structure is actively undergoing severe degradation due to mineral growth which is related to chemical reactions between the concrete and pore fluid. The physical growth of minerals causes disfigurement and structural weakening.Pyrite and pyrrhotine hosted by dolerite aggregate appear to have been oxidized, providing sulphate for the deposition of ettringite and minor gypsum, in spheroidal cavities within the cement paste. The rainwater which passes through the structure mobilising sulphate from original gypsum in the paste and oxidizing the iron sulphides is also involved in the further leaching of elements from the cement paste and in the deposition of calcite. The isotopic values of calcites forming a crust on the concrete and a stalactite under the bridge are similar with δ13C= −19‰ PDB and δ18‰= +16‰ SMOW. We suggest that atmospheric carbon dioxide was the carbon source. The carbon isotopic fractionation of −12‰ from atmospheric carbon dioxide of δ13C= −7‰, (O'Neil and Barnes, 1971) can best be explained as due to a kinetic fractionation related to the hyper-basicity of the pore water. The equilibrium formation temperature of about 45°C calculated from the oxygen isotope values and assuming a δ18O value of meteoric water of −8‰ SMOW, is considered unreasonable. The exceptionally low δ18O values are attributed mainly to reaction kinetics and the calcite inheriting its oxygen, two-thirds from atmospheric carbon dioxide and one third from the meteoric formation water (O'Neil and Barnes, 1971). A δ18O value of atmospheric carbon dioxide of +41‰ SMOW and a δ18O value of meteoric water of −8‰ SMOW, lead to a calculated δ18O value for the calcites of +10‰ SMOW. The calcites analysed have a value of +16‰ and this may be due to partial re-equilibration towards a calculated value of +21‰ for calcite in equilibrium with the meteoric water at 20°C.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 24, 2025 09:37:01
Go to top of page