Vote for your favorite mineral in #MinCup25! - Kosmochlor vs. Azurite
It's a battle of green vs blue as rare but vibrant chromium-bearing kosmochlor up against the deep blue copper alteration mineral azurite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Wei, Dongsong, Wang, Jinguo, Li, Shuyi, Wang, Dawei, Liu, Yan (2023) A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chemical Engineering Journal, 475. 146113 doi:10.1016/j.cej.2023.146113

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion
JournalChemical Engineering Journal
AuthorsWei, DongsongAuthor
Wang, JinguoAuthor
Li, ShuyiAuthor
Wang, DaweiAuthor
Liu, YanAuthor
Year2023 (November)Volume475
PublisherElsevier BV
DOIdoi:10.1016/j.cej.2023.146113Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID16885978Long-form Identifiermindat:1:5:16885978:0
GUID0
Full ReferenceWei, Dongsong, Wang, Jinguo, Li, Shuyi, Wang, Dawei, Liu, Yan (2023) A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chemical Engineering Journal, 475. 146113 doi:10.1016/j.cej.2023.146113
Plain TextWei, Dongsong, Wang, Jinguo, Li, Shuyi, Wang, Dawei, Liu, Yan (2023) A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chemical Engineering Journal, 475. 146113 doi:10.1016/j.cej.2023.146113
In(2023) Chemical Engineering Journal Vol. 475. Elsevier BV


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 9, 2025 04:45:41
Go to top of page