Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zendehdel, Ali Asghar, Sorouraddin, Saeed Mohammad, Farajzadeh, Mir Ali (2023) In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry. Analytical Sciences, 39 (11) 1901-1908 doi:10.1007/s44211-023-00399-1

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleIn-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry
JournalAnalytical Sciences
AuthorsZendehdel, Ali AsgharAuthor
Sorouraddin, Saeed MohammadAuthor
Farajzadeh, Mir AliAuthor
Year2023 (November)Volume39
Issue11
PublisherSpringer Science and Business Media LLC
DOIdoi:10.1007/s44211-023-00399-1Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID16904239Long-form Identifiermindat:1:5:16904239:6
GUID0
Full ReferenceZendehdel, Ali Asghar, Sorouraddin, Saeed Mohammad, Farajzadeh, Mir Ali (2023) In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry. Analytical Sciences, 39 (11) 1901-1908 doi:10.1007/s44211-023-00399-1
Plain TextZendehdel, Ali Asghar, Sorouraddin, Saeed Mohammad, Farajzadeh, Mir Ali (2023) In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry. Analytical Sciences, 39 (11) 1901-1908 doi:10.1007/s44211-023-00399-1
In(2023, November) Analytical Sciences Vol. 39 (11) Japan Society for Analytical Chemistry


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 30, 2025 12:47:03
Go to top of page