Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Elliott, P., Kolitsch, U., Giester, G., Libowitzky, E., McCammon, C., Pring, A., Birch, W. D., Brugger, J. (2009) Description and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia. Mineralogical Magazine, 73 (1) 131-148 doi:10.1180/minmag.2009.073.1.131

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleDescription and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia
JournalMineralogical Magazine
AuthorsElliott, P.Author
Kolitsch, U.Author
Giester, G.Author
Libowitzky, E.Author
McCammon, C.Author
Pring, A.Author
Birch, W. D.Author
Brugger, J.Author
Year2009 (February)Volume73
Issue1
PublisherMineralogical Society
URL
Download URLhttps://rruff.info/rruff_1.0/uploads/MM73_131.pdf+
DOIdoi:10.1180/minmag.2009.073.1.131Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID16991570Long-form Identifiermindat:1:5:16991570:6
GUID0
Full ReferenceElliott, P., Kolitsch, U., Giester, G., Libowitzky, E., McCammon, C., Pring, A., Birch, W. D., Brugger, J. (2009) Description and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia. Mineralogical Magazine, 73 (1) 131-148 doi:10.1180/minmag.2009.073.1.131
Plain TextElliott, P., Kolitsch, U., Giester, G., Libowitzky, E., McCammon, C., Pring, A., Birch, W. D., Brugger, J. (2009) Description and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia. Mineralogical Magazine, 73 (1) 131-148 doi:10.1180/minmag.2009.073.1.131
In(2009, February) Mineralogical Magazine Vol. 73 (1) Mineralogical Society
Abstract/NotesPlimerite, ideally Zn (PO4)3(OH)5, is a new mineral from the Block 14 Opencut, Broken Hill, New SouthWales. It occurs as pale-green to dark-olive-green, almost black, acicular to prismatic and bladed crystals up to 0.5 mm long and as hemispherical aggregates of radiating acicular crystals up to 3 mm across. Crystals are elongated along [001] and the principal form observed is {100} with minor {010} and {001}. The mineral is associated with hinsdalite-plumbogummite, pyromorphite, libethenite, brochantite, malachite, tsumebite and strengite. Plimerite is translucent with a pale-greyish-green streak and a vitreous lustre. It shows an excellent cleavage parallel to {100} and {010} and distinct cleavage parallel to {001}. It is brittle, has an uneven fracture, a Mohs’ hardness of 3.5–4, D(meas.) = 3.67(5) g/cm3 and D(calc.) = 3.62 g/cm3 (for the empirical formula). Optically, it is biaxial negative with α = 1.756(5), β = 1.764(4), γ = 1.767(4) and 2V(calc.) of –63º; pleochroism is X pale-greenish-brown, Y pale-brown, Z pale-bluish-green; absorption Z > X > Y; optical orientation XYZ = cab. Plimerite is orthorhombic, space group Bbmm, unit-cell parameters: a = 13.865(3) Å, b = 16.798(3) Å, c = 5.151(10) Å, V = 1187.0(4) Å3 (single-crystal data) and Z = 4. Strongest lines in the X-ray powder diffraction pattern are [d (A˚ ), I, hkl]: 4.638, (50), (111); 3.388, (50), (041); 3.369, (55), (131); 3.168, (100), (132); 2.753, (60), (115); 2.575, (90), (200); 2.414, (75), (220); 2.400, (50), (221); 1.957, (40), (225). Electron microprobe analysis yielded (wt.%): PbO 0.36, CaO 0.17, ZnO 20.17, MnO 0.02, Fe2O3 29.82, FeO 2.98, Al2O3 4.48, P2O5 32.37, As2O5 0.09, H2O (calc) 6.84, total 97.30 (Fe3+/Fe2+ ratio determined by Mössbauer spectroscopy). The empirical formula calculated on the basis of 17 oxygens is Ca0.02Pb0.01Zn1.68Al0.60P3.09As0.01O17.00H5.15. The crystal structure was solved by direct methods and refined to an R1 index of 6.41% for 1332 observed reflections from single-crystal X-ray diffraction data (Mo-Kα radiation, CCD area detector). The structure of plimerite is isotypic with that of rockbridgeite and is based on face-sharing trimers of (Mϕ6) octahedra which link by sharing edges to form chains, that extend in the b-direction. Chains link to clusters comprising pairs of corner-sharing (Mϕ6) octahedra that link to PO4 tetrahedra forming sheets parallel to (001). The sheets link via octahedra and tetrahedra corners into a heteropolyhedral framework structure. The mineral name honours Professor Ian Plimer for his contributions to the study of the geology of ore deposits.

Map of Localities

Locality Pages

LocalityCitation Details
Block 14 opencut, Broken Hill, Broken Hill district, Yancowinna Co., New South Wales, Australia

Mineral Pages

MineralCitation Details
Plimerite

Mineral Occurrences

LocalityMineral(s)
Block 14 opencut, Broken Hill, Broken Hill district, Yancowinna Co., New South Wales, Australia Plimerite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 15, 2025 00:02:50
Go to top of page