Reference Type | Journal (article/letter/editorial) |
---|
Title | Composite Style Pixel and Point Convolution-Based Deep Fusion Neural Network Architecture for the Semantic Segmentation of Hyperspectral and Lidar Data |
---|
Journal | Remote Sensing |
---|
Authors | Decker, Kevin | Author |
---|
Borghetti, Brett | Author |
Year | 2022 (April 28) | Volume | 14 |
---|
Issue | 9 |
---|
Publisher | MDPI AG |
---|
DOI | doi:10.3390/rs14092113Search in ResearchGate |
---|
| Generate Citation Formats |
Mindat Ref. ID | 17784865 | Long-form Identifier | mindat:1:5:17784865:2 |
---|
|
GUID | 0 |
---|
Full Reference | Decker, Kevin, Borghetti, Brett (2022) Composite Style Pixel and Point Convolution-Based Deep Fusion Neural Network Architecture for the Semantic Segmentation of Hyperspectral and Lidar Data. Remote Sensing, 14 (9). doi:10.3390/rs14092113 |
---|
Plain Text | Decker, Kevin, Borghetti, Brett (2022) Composite Style Pixel and Point Convolution-Based Deep Fusion Neural Network Architecture for the Semantic Segmentation of Hyperspectral and Lidar Data. Remote Sensing, 14 (9). doi:10.3390/rs14092113 |
---|
In | (2022, April) Remote Sensing Vol. 14 (9). MDPI AG |
---|
These are possibly similar items as determined by title/reference text matching only.