Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Dearnley, R. (1993) A corresponding states equation and compensation effects in crystal growth rates. Mineralogical Magazine, 57 (387) 337-348 doi:10.1180/minmag.1993.057.387.17

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA corresponding states equation and compensation effects in crystal growth rates
JournalMineralogical MagazineISSN0026-461X
AuthorsDearnley, R.Author
Year1993 (June)Volume57
Issue387
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_57/57-387-337.pdf+
DOIdoi:10.1180/minmag.1993.057.387.17Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID1925Long-form Identifiermindat:1:5:1925:9
GUID0
Full ReferenceDearnley, R. (1993) A corresponding states equation and compensation effects in crystal growth rates. Mineralogical Magazine, 57 (387) 337-348 doi:10.1180/minmag.1993.057.387.17
Plain TextDearnley, R. (1993) A corresponding states equation and compensation effects in crystal growth rates. Mineralogical Magazine, 57 (387) 337-348 doi:10.1180/minmag.1993.057.387.17
In(1993, June) Mineralogical Magazine Vol. 57 (387) Mineralogical Society
Abstract/NotesAbstractInterpretation of grain size measurements in terms of the kinetics of grain growth depends on the ability to define the temperature variation of mineral growth rates. An outline is presented of the application to mineral growth rates of a corresponding states equation (CSE), which provides a relationship of growth rate to a reduced temperature function. Additionally, growth rates exhibit a 'compensation effect' between the pre-exponential constant and the activation energy in the standard Arrhenius equation, analogous to that shown by diffusion data. The general systematics of activation energy, equilibrium temperature and growth rate maxima are controlled by the relationships of the CSE, the standard Arrhenius equation and the compensation effect, and on this basis the temperature variation of growth rate between the equilibrium and the glass temperature may he estimated.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 28, 2025 22:33:02
Go to top of page