Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Xie, Zhuojun, Xia, Yong, Cline, Jean S., Pribil, Michael J., Koenig, Alan, Tan, Qinping, Wei, Dongtian, Wang, Zepeng, Yan, Jun (2018) Magmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Economic Geology, 113 (7) 1627-1652 doi:10.5382/econgeo.2018.4607

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMagmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits
JournalEconomic Geology
AuthorsXie, ZhuojunAuthor
Xia, YongAuthor
Cline, Jean S.Author
Pribil, Michael J.Author
Koenig, AlanAuthor
Tan, QinpingAuthor
Wei, DongtianAuthor
Wang, ZepengAuthor
Yan, JunAuthor
Year2018 (November 1)Volume113
Issue7
PublisherSociety of Economic Geologists
DOIdoi:10.5382/econgeo.2018.4607Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID224549Long-form Identifiermindat:1:5:224549:6
GUID0
Full ReferenceXie, Zhuojun, Xia, Yong, Cline, Jean S., Pribil, Michael J., Koenig, Alan, Tan, Qinping, Wei, Dongtian, Wang, Zepeng, Yan, Jun (2018) Magmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Economic Geology, 113 (7) 1627-1652 doi:10.5382/econgeo.2018.4607
Plain TextXie, Zhuojun, Xia, Yong, Cline, Jean S., Pribil, Michael J., Koenig, Alan, Tan, Qinping, Wei, Dongtian, Wang, Zepeng, Yan, Jun (2018) Magmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Economic Geology, 113 (7) 1627-1652 doi:10.5382/econgeo.2018.4607
In(2018, November) Economic Geology Vol. 113 (7) Society of Economic Geologists
Abstract/NotesAbstract
The southwest Guizhou Province, China, contains numerous sediment-hosted Au deposits with Au reserves greater than 700 tonnes. To date, the source of ore fluids that formed the Guizhou sediment-hosted Au deposits is controversial, hampering the formulation of genetic models. In this study, we selected the Shuiyindong and Jinfeng Au deposits, the largest strata-bound and fault-controlled deposits in Guizhou, respectively, for detailed research on pyrite chemistry and S isotope composition using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS), respectively.
Petrography and pyrite chemistry studies distinguished five generations of pyrite. Among these, pre-ore pyrite 2 and ore pyrite are the most abundant types in the deposits. Pre-ore pyrite 2 is anhedral to euhedral and with ~2,639 ppm As and wider ranges of Cu, Sb, and Pb (<~22–4,837 ppm, <~6 to 532 ppm, and <~4 to 1,344 ppm, respectively). Gold in pre-ore pyrite 2 is below the detection limit of LA-ICP-MS (~2 ppm). Pre-ore pyrite 2 is interpreted to have a sedimentary (syngenetic or diagenetic) origin. Ore pyrite commonly rims the four identified pre-ore pyrites or occurs as individual, anhedral to euhedral crystals. Ore pyrite is enriched in Au (~641 ppm), As (~9,147 ppm), Cu (~1,043 ppm), Sb (~188 ppm), Hg (~43 ppm), and Tl (~22 ppm) in both deposits. Ore pyrite formed mainly by sulfidation of Fe in Fe-bearing host rocks, mainly Fe dolomite, and As, Cu, Sb, Hg, and Tl, also in ore fluids, were incorporated into ore pyrite.
In situ δ34S isotope ratios for pre-ore pyrite 2 and ore pyrite were measured by LA-MC-ICP-MS. Pre-ore pyrite 2 from Shuiyindong and Jinfeng deposits resulted in δ34S values ranging from −0.8 to +3.4‰ and from 5.1 to 10.5‰, respectively. Analyses of ore pyrite from the Shuiyindong have δ34S values that vary from −3.3 to +2.5‰, with a median of 0.7‰; analyses of ore pyrite from the Jinfeng range from 8.9 to 11.2‰, with a median at 10.3‰. Available bulk and in situ δ34S data in the literature for pre-ore pyrites 1 and 2 and ore-related sulfide minerals including ore pyrite, arsenopyrite, and late ore-stage stibnite, realgar, orpiment, and cinnabar from several Guizhou sediment-hosted Au deposits were compiled for comparison. Pre-ore-stage pyrites from Guizhou sediment-hosted Au deposits have a broad range of δ34S values, from −33.8 to + 17.9‰ (including in situ and available bulk δ34S data). Ore-related sulfide minerals in all Guizhou sediment-hosted Au deposits, except Jinfeng, have very similar δ34S values, and most data plot between ~−5 and +5‰. In the Jinfeng deposit, the ore-related sulfide minerals exhibit δ34S values ranging from 1.9 to 18.1‰, with most data plotting between 6 and 12‰.
The broad range of S isotope compositions for the sedimentary pyrites (pre-ore pyrites 1 and 2) indicate that S in these pre-ore pyrites was most likely generated by bacterial reduction from marine sulfate. The narrow range of δ34S values (~−5–+5‰) for ore-related sulfide minerals in all Guizhou sediment-hosted Au deposits, excepting the Jinfeng deposit, suggests that the deposits may have formed in response to a single widespread metallogenic event. As the S isotope fractionation between hydrothermal fluids and sulfide minerals in a sulfide-dominated system is small (<2‰) at ~250°C, the initial ore fluids that formed the Guizhou sediment-hosted Au deposits would have had δ34S values similar to the ore-related sulfide minerals, between ~−5 and +5‰. At Jinfeng, initial ore fluids may have mixed with local fluids with heavier δ34S, possibly basin brine (δ34Sbasin brine >18‰), resulting in elevated δ34S values of ore-related sulfide minerals and especially late ore-stage sulfide minerals.
Although few igneous rocks are exposed in the mining area around these deposits, there is evidence of magmatic activity ~20 km away. Furthermore, gravity and magnetic geophysical investigations indicate the presence of a pluton ~5 km below the surface of the Shuiyindong district. Based on in situ S isotope results and recent data indicating proximal intrusions, we interpret a deep magmatic S source for the ore fluids that formed the Guizhou sediment-hosted Au deposits. However, as the age for Au mineralization of Guizhou sediment-hosted Au deposits is still debated, the mineralization-magma connection remains hypothetical. Identifying an ore fluid source and time frame for Guizhou Au mineralization continues to be a critically important research goal for this district.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 20, 2025 02:54:29
Go to top of page