Vote for your favorite mineral in #MinCup25! - Calcite vs. Perovskite
This match of heavy hitters is bound to end in heartbreak as classic calcite faces off against futuristic perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hall, L. J., Brodie, J., Wood, B. J., Carroll, M. R. (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineralogical Magazine, 68 (1) 75-81 doi:10.1180/0026461046810172

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleIron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature
JournalMineralogical Magazine
AuthorsHall, L. J.Author
Brodie, J.Author
Wood, B. J.Author
Carroll, M. R.Author
Year2004 (February)Volume68
Issue1
PublisherMineralogical Society
DOIdoi:10.1180/0026461046810172Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243521Long-form Identifiermindat:1:5:243521:7
GUID0
Full ReferenceHall, L. J., Brodie, J., Wood, B. J., Carroll, M. R. (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineralogical Magazine, 68 (1) 75-81 doi:10.1180/0026461046810172
Plain TextHall, L. J., Brodie, J., Wood, B. J., Carroll, M. R. (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineralogical Magazine, 68 (1) 75-81 doi:10.1180/0026461046810172
Abstract/NotesAbstractWe have performed experiments to determine the extents to which Fe and H2O are lost from hydrous basaltic melts contained in Au80Pd20 and graphite-lined Pt capsules at 0.7 –1 GPa and 1300–1350°C. All experiments were performed in the piston-cylinder apparatus. In order to minimize the possibility of rupture of the AuPd capsule and to control H2O loss we used a double-capsule method. The inner welded 2 mm diameter Au80Pd20 capsule was placed inside a welded 3 mm diameter Pt capsule, the intervening space being packed with hydrous sample. Loss of FeO* from the sample was found to be ≤4% relative in both the Au80Pd20 and graphite-lined Pt capsules in experiments of up to 24 h duration. Loss of H2O is greater and it depends on the oxidation state of the starting materials and the nature of the capsule. For starting mixes fired at 1 log fO2 unit above the quartz-fayalite-magnetite (QFM) buffer at 1 atm, H2O loss from Au80Pd20 capsules averaged 9% relative. Starting mixes fired at 1 log fO2 unit below the QFM buffer at 1atm lost, on average, 32% of their H2O when run in Au80Pd20 capsules at high pressure. All samples run in graphite-lined Pt capsules experienced dramatic H2O loss, averaging 52% relative, irrespective of initial oxidation state. We conclude that Au80Pd20 capsules are suitable for high-pressure hydrous melting experiments and that the sample loses very little Fe. In order to minimize H2O-loss, however, it is important that the starting materials be relatively oxidized.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 4, 2025 06:09:55
Go to top of page