Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Welch, M. D. (2004) Pb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2. Mineralogical Magazine, 68 (2) 247-254 doi:10.1180/0026461046820185

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitlePb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2
JournalMineralogical Magazine
AuthorsWelch, M. D.Author
Year2004 (April)Volume68
Issue2
PublisherMineralogical Society
DOIdoi:10.1180/0026461046820185Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243535Long-form Identifiermindat:1:5:243535:4
GUID0
Full ReferenceWelch, M. D. (2004) Pb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2. Mineralogical Magazine, 68 (2) 247-254 doi:10.1180/0026461046820185
Plain TextWelch, M. D. (2004) Pb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2. Mineralogical Magazine, 68 (2) 247-254 doi:10.1180/0026461046820185
Abstract/NotesAbstractThe original structure determination of asisite, nominally Pb7SiO8Cl2, has been re-evaluated in the light of electron-diffraction data (TEM) on the original sample material. Electron diffraction patterns indicate a super-structure based upon a metrically tetragonal 26-cation-site super-sheet motif (14x14x23 Å). Given the strong ordering of elements substituting for Pb in closely-related litharge-based oxychlorides (parkinsonite, symesite, kombatite, schwartzembergite), the asisite superstructure is inferred to be due to strong ordering of Si within the PbO sheet. The original chemical analyses of asisite given by Rouse et al. (1988) are shown to be consistent with such a super-structure, which has a 12Pb:1Si cation ratio. A new formula for asisite is proposed that is based upon this superstructure: Pb12(SiO4)O8Cl4 (Z = 8). The structure of asisite determined by Rouse et al. (1988) is that of the average Pb/Si-disordered tetragonal sub-cell (I4/mmm: 4x4x23 Å) and belies the highly ordered real state. The structure of the tetragonal sub-cell has been re-determined here: R = 5.6% for 178 unique Fo > 4σFo and an anisotropic model. A significantly reduced 72% occupancy of the Pb(2) site was found that implies the nominal formula Pb7SiO8Cl2, thus confirming the findings of Rouse et al. (1988). Comparisons with kombatite and symesite support the assignment of Si to Pb(2) and imply that Si in asisite is also likely to be in tetrahedral coordination, with the apical oxygen cross-linking PbO sheets. However, because most of the key information relating to the location of Si is provided by the super-lattice reflections, the inability of X-ray diffraction to register these reflections introduces a significant ambiguity into the interpretation of Pb/Si ordering behaviour in this mineral.

Mineral Pages

MineralCitation Details
Asisite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 15, 2025 04:27:16
Go to top of page