Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Vaughan, J. P., Kyin, A. (2004) Refractory gold ores in Archaean greenstones,Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineralogical Magazine, 68 (2) 255-277 doi:10.1180/0026461046820186

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleRefractory gold ores in Archaean greenstones,Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification
JournalMineralogical Magazine
AuthorsVaughan, J. P.Author
Kyin, A.Author
Year2004 (April)Volume68
Issue2
PublisherMineralogical Society
DOIdoi:10.1180/0026461046820186Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243536Long-form Identifiermindat:1:5:243536:1
GUID0
Full ReferenceVaughan, J. P., Kyin, A. (2004) Refractory gold ores in Archaean greenstones,Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineralogical Magazine, 68 (2) 255-277 doi:10.1180/0026461046820186
Plain TextVaughan, J. P., Kyin, A. (2004) Refractory gold ores in Archaean greenstones,Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineralogical Magazine, 68 (2) 255-277 doi:10.1180/0026461046820186
Abstract/NotesAbstractMesothermal gold ores in the Archaean Yilgarn Craton of Western Australia are dominated by a pyrite ± arsenopyrite ± pyrrhotite sulphide assemblage. Many of these ores are refractory to varying degrees and require treatment by roasting, bacterial oxidation or finer milling. The most common sulphide ore types can be sub-divided broadly into pyritic (pyrite±pyrrhotite) and arsenical types (pyrite+arsenopyrite± pyrrhotite). Arsenical ores vary from highly refractory to free-milling. Arsenopyrite in highly refractory ores is finer grained, As-deficient (27 –32.5 at.% As), contains high average concentrations of submicroscopic gold (60 –270 ppm), but does not contain inclusions of particulate gold. Arsenopyrite in free-milling ores is coarser grained, less As-deficient to slightly As-rich (30 –35 at.% As), contains low or negligible concentrations of submicroscopic gold, but contains inclusions and fracture fillings of particulate gold. In some refractory arsenical ores, pyrite also contains moderately high levels of submicroscopic gold (20 –40 ppm), the concentration of which is directly related to As content of the pyrite.Pyritic ores are free-milling to mildly refractory, or rarely moderately refractory. Pyrite in pyritic ores contains negligible to low levels of submicroscopic gold (<5 ppm). Other reasons for refractory behaviour in pyritic ores include very fine-grained native gold inclusions in pyrite, or the presence of gold-bearing tellurides.It is concluded that submicroscopic gold is incorporated into the crystal lattices of arsenopyite and arsenical pyrite at sub-greenschist to lower greenschist-facies temperatures, and is progressively expelled as inclusions and fracture fillings of native gold in sulphides, and ultimately into the gangue, as recrystallization proceeds through upper greenschist- into amphibolite-facies temperatures, during deformation and burial. Submicroscopic gold is expelled more rapidly from pyrite than arsenopyrite.Pyrrhotite progressively replaces primary pyrite at higher temperatures, but rarely contains gold. Finally, a metallurgical classification scheme for refractory ores is presented which incorporates the above mineralogical conclusions.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 14, 2025 06:02:58
Go to top of page