Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Cooper, M. A., Hawthorne, F. C., Back, M. E. (2008) The crystal structure of khinite and polytypism in khinite and parakhinite. Mineralogical Magazine, 72 (3) 763-770 doi:10.1180/minmag.2008.072.3.763

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe crystal structure of khinite and polytypism in khinite and parakhinite
JournalMineralogical Magazine
AuthorsCooper, M. A.Author
Hawthorne, F. C.Author
Back, M. E.Author
Year2008 (June)Volume72
Issue3
PublisherMineralogical Society
DOIdoi:10.1180/minmag.2008.072.3.763Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243923Long-form Identifiermindat:1:5:243923:9
GUID0
Full ReferenceCooper, M. A., Hawthorne, F. C., Back, M. E. (2008) The crystal structure of khinite and polytypism in khinite and parakhinite. Mineralogical Magazine, 72 (3) 763-770 doi:10.1180/minmag.2008.072.3.763
Plain TextCooper, M. A., Hawthorne, F. C., Back, M. E. (2008) The crystal structure of khinite and polytypism in khinite and parakhinite. Mineralogical Magazine, 72 (3) 763-770 doi:10.1180/minmag.2008.072.3.763
Abstract/NotesAbstractThe crystal structure of khinite, Pb2+Cu2+3Te6+O6(OH)2, orthorhombic, a = 5.7491(10), b = 10.0176(14), c = 24.022(3) Å, V = 1383.6(4) Å3, space group Fdd2, Z = 8, Dcalc = 6.29 g/cm3, from the Empire mine, Tombstone, Arizona, USA, has been solved by direct methods and refined to R1 = 3.2% on the basis of 636 unique observed reflections. There is one distinct Te site occupied by Te and coordinated by six O atoms in an octahedral arrangement with a <Te–O> distance of 1.962 Å. typical of Te6+. There are three octahedrally-coordinated Cu sites, each of which is occupied by Cu2+ with <Cu–O> distances of 2.132, 2.151 and 2.308 Å, respectively. Each Cu octahedron shows four short meridional bonds (~1.95 Å) and two long apical bonds (2.46–2.99 Å) characteristic of Jahn-Teller-distorted Cu2+ octahedra. There is one distinct Pb site occupied by Pb and coordinated by six O atoms and two (OH) groups with a <Pb–O, OH> distance of 2.690 Å. TeF6 and CuΦ6 octahedra share edges and corners to form an [MΦ2] (where Φ = O, OH) layer of composition [TeCu3Φ8]. These layers stack along the c axis at 6 A intervals with Pb atoms between the layers. Identical layers occur in the structure of parakhinite, Pb2+Cu2+Te6+O6(OH)2, hexagonal, a = 5.765(2), c = 18.001(9) Å, V =518.0(4) Å3, space group P32, Z = 3, Dcalc = 6.30 g/cm3. It is only the relative stacking of the TeCu3Φ8 layers in the c direction that distinguishes the two structures, and hence khinite and parakhinite are polytypes.

Mineral Pages

MineralCitation Details
Khinite
Khinite-3T
Khinite-4O


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 30, 2025 01:25:22
Go to top of page