Vote for your favorite mineral in #MinCup25! - Topaz vs. Kyanite
It's a battle of high-pressure colourful beauties of #topaz vs #kyanite. Which can stand the heat of round 1?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Krenn, E., Finger, F. (2010) Unusually Y-rich monazite-(Ce) with 6–14 wt.% Y2O3 in a granulite from the Bohemian Massif: implications for high-temperature monazite growth from the monazite-xenotime miscibility gap thermometry. Mineralogical Magazine, 74 (2) 217-225 doi:10.1180/minmag.2010.073.2.217

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleUnusually Y-rich monazite-(Ce) with 6–14 wt.% Y2O3 in a granulite from the Bohemian Massif: implications for high-temperature monazite growth from the monazite-xenotime miscibility gap thermometry
JournalMineralogical Magazine
AuthorsKrenn, E.Author
Finger, F.Author
Year2010 (April)Volume74
Issue2
PublisherMineralogical Society
DOIdoi:10.1180/minmag.2010.073.2.217Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID244059Long-form Identifiermindat:1:5:244059:4
GUID0
Full ReferenceKrenn, E., Finger, F. (2010) Unusually Y-rich monazite-(Ce) with 6–14 wt.% Y2O3 in a granulite from the Bohemian Massif: implications for high-temperature monazite growth from the monazite-xenotime miscibility gap thermometry. Mineralogical Magazine, 74 (2) 217-225 doi:10.1180/minmag.2010.073.2.217
Plain TextKrenn, E., Finger, F. (2010) Unusually Y-rich monazite-(Ce) with 6–14 wt.% Y2O3 in a granulite from the Bohemian Massif: implications for high-temperature monazite growth from the monazite-xenotime miscibility gap thermometry. Mineralogical Magazine, 74 (2) 217-225 doi:10.1180/minmag.2010.073.2.217
In(2010, April) Mineralogical Magazine Vol. 74 (2) Mineralogical Society
Abstract/NotesAbstractAccessory monazite-(Ce) with an extraordinarily high proportion of the xenotime component in solid solution of 21–42 mol.% (6.5–14 wt.% Y2O3, 6–11 wt.% HREE2O3) was discovered in a retrogressed Variscan high-pressure, high-temperature granulite from the southern Bohemian Massif, Austria. The grains with the highest proportion of xenotime (XXno ~0.4) should have had a minimum formation temperature of ~1050°C, according to published monazite-xenotime miscibility gap thermometers. This high temperature is consistent with previous petrological studies on the south Bohemian granulites indicating ~1000°C/16 kbar for the peak metamorphic stage.

Mineral Pages

MineralCitation Details
Monazite-(Ce)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 13, 2025 21:43:34
Go to top of page