Vote for your favorite mineral in #MinCup25! - Silver vs. Baryte
Are you ready for beautiful utility as sparkling silver competes against hefty baryte?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Giustetto, R., Seenivasan, K., Belluso, E. (2014) Asbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards. Mineralogical Magazine, 78 (4) 919-940 doi:10.1180/minmag.2014.078.4.11

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleAsbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards
JournalMineralogical Magazine
AuthorsGiustetto, R.Author
Seenivasan, K.Author
Belluso, E.Author
Year2014 (August)Volume78
Issue4
PublisherMineralogical Society
DOIdoi:10.1180/minmag.2014.078.4.11Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID244546Long-form Identifiermindat:1:5:244546:9
GUID0
Full ReferenceGiustetto, R., Seenivasan, K., Belluso, E. (2014) Asbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards. Mineralogical Magazine, 78 (4) 919-940 doi:10.1180/minmag.2014.078.4.11
Plain TextGiustetto, R., Seenivasan, K., Belluso, E. (2014) Asbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards. Mineralogical Magazine, 78 (4) 919-940 doi:10.1180/minmag.2014.078.4.11
Abstract/NotesAbstractAn atypical asbestiform sepiolite occurrence with exceptionally long fibres wrapped by a sheath of aliphatic hydrocarbons was found in the Gressoney Valley (Italian Western Alps) while monitoring asbestos presence in outcrops of serpentinite rocks. Microscopic and Fourier transform infrared analyses proved that these fibres, apparently up to several cm long, are formed by bundles of thinner fibrils (average length: 150 μm) potentially dispersible in the environment. When observed using transmission electron microscopy these fibrils show a rhomboidal to parallelogram cross section (<1 μm), of which surfaces are covered mostly by an aliphatic hydrocarbon film – an association not reported in the literature. The sepiolite fibrils and their organic coating probably originated in sequential steps from precipitation of Si/Mg rich hydrothermal fluids, resulting from serpentinization of olivine and clinopyroxene and a Fischer-Tropsch-type reaction. The presence of hydrocarbons has serious implications for the sepiolite habit, as the organic wrap interacts with the fibril’s surface reducing the amount of adsorbed water and favouring the fragmentation of thicker units into thinner ones, due to an ‘opening’ process implying separation along z and cleavage on (110). This defibrillation mechanism, coupled with the extraordinary length, further increases the aspect ratio of these fibrils (length/width ≫3) thus amplifying their potential danger for human health when dispersed in air and inhaled.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 5, 2025 19:52:59
Go to top of page