Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Subbotin, Victor V., Vymazalová, Anna, Laufek, František, Savchenko, Yevgeny E., Stanley, Chris J., Gabov, Dmitry A., Plášil, Jakub (2019) Mitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. Mineralogical Magazine, 83 (4) 523-530 doi:10.1180/mgm.2018.150

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia
JournalMineralogical Magazine
AuthorsSubbotin, Victor V.Author
Vymazalová, AnnaAuthor
Laufek, FrantišekAuthor
Savchenko, Yevgeny E.Author
Stanley, Chris J.Author
Gabov, Dmitry A.Author
Plášil, JakubAuthor
Year2019 (August)Volume83
Issue4
PublisherMineralogical Society
DOIdoi:10.1180/mgm.2018.150Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID245158Long-form Identifiermindat:1:5:245158:3
GUID0
Full ReferenceSubbotin, Victor V., Vymazalová, Anna, Laufek, František, Savchenko, Yevgeny E., Stanley, Chris J., Gabov, Dmitry A., Plášil, Jakub (2019) Mitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. Mineralogical Magazine, 83 (4) 523-530 doi:10.1180/mgm.2018.150
Plain TextSubbotin, Victor V., Vymazalová, Anna, Laufek, František, Savchenko, Yevgeny E., Stanley, Chris J., Gabov, Dmitry A., Plášil, Jakub (2019) Mitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. Mineralogical Magazine, 83 (4) 523-530 doi:10.1180/mgm.2018.150
Abstract/NotesAbstractMitrofanovite, Pt3Te4, is a new telluride discovered in low-sulfide disseminated ore in the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. It forms anhedral grains (up to ~20 μm × 50 μm) commonly in intergrowths with moncheite in aggregates with lukkulaisvaaraite, kotulskite, vysotskite, braggite, keithconnite, rustenburgite and Pt–Fe alloys hosted by a chalcopyrite–pentlandite–pyrrhotite matrix. Associated silicates are: orthopyroxene, augite, olivine, amphiboles and plagioclase. Mitrofanovite is brittle; it has a metallic lustre and a grey streak. Mitrofanovite has a good cleavage, along {001}. In plane-polarised light, mitrofanovite is bright white with medium to strong bireflectance, slight pleochroism, and strong anisotropy on non-basal sections with greyish brown rotation tints; it exhibits no internal reflections. Reflectance values for the synthetic analogue of mitrofanovite in air (Ro, Re’ in %) are: 58.4, 54.6 at 470 nm; 62.7, 58.0 at 546 nm; 63.4, 59.1 at 589 nm; and 63.6, 59.5 at 650 nm. Fifteen electron-microprobe analyses of mitrofanovite gave an average composition: Pt 52.08, Pd 0.19, Te 47.08 and Bi 0.91, total 100.27 wt.%, corresponding to the formula (Pt2.91Pd0.02)Σ2.93(Te4.02Bi0.05)Σ4.07 based on 7 atoms; the average of eleven analyses on synthetic analogue is: Pt 52.57 and Te 47.45, total 100.02 wt.%, corresponding to Pt2.94Te4.06. The density, calculated on the basis of the formula, is 11.18 g/cm3. The mineral is trigonal, space group R$\overline 3 $m, with a = 3.9874(1), c = 35.361(1) Å, V = 486.91(2) Å3 and Z = 3. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Pt3Te4. Mitrofanovite is structurally and chemically related to moncheite (PtTe2). The strongest lines in the powder X-ray diffraction pattern of synthetic mitrofanovite [d in Å (I) (hkl)] are: 11.790(23)(003), 5.891(100)(006), 2.851(26)(107), 2.137(16)(1013), 2.039(18)(0114), 1.574(24)(0120), 1.3098(21)(0027). The structural identity of natural mitrofanovite with synthetic Pt3Te4 was confirmed by electron backscatter diffraction measurements on the natural sample. The mineral name is chosen to honour Felix P. Mitrofanov, a Russian geologist who was among the first to discover platinum-group element mineralisation in the Fedorova–Pana complex.

Map of Localities

Locality Pages

LocalityCitation Details
East Chuarvy, Eastern Pana block, Fedorovo-Pansky massif (Pana layered complex), Murmansk Oblast, Russia

Mineral Pages

MineralCitation Details
Mitrofanovite

Mineral Occurrences

LocalityMineral(s)
East Chuarvy, Eastern Pana block, Fedorovo-Pansky massif (Pana layered complex), Murmansk Oblast, Russia Mitrofanovite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 19, 2025 07:45:43
Go to top of page