Vote for your favorite mineral in #MinCup25! - Pollucite vs. Tugtupite
It's the cesium #pollucite against the optical changeling #tugtupite for this match.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Trotter, F. M. (1950) The Devolatilization Equation for South Wales Coals. Geological Magazine, 87 (3) 196-208 doi:10.1017/s0016756800076925

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe Devolatilization Equation for South Wales Coals
JournalGeological Magazine
AuthorsTrotter, F. M.Author
Year1950 (June)Volume87
Issue3
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756800076925
Generate Citation Formats
Mindat Ref. ID247937Long-form Identifiermindat:1:5:247937:2
GUID0
Full ReferenceTrotter, F. M. (1950) The Devolatilization Equation for South Wales Coals. Geological Magazine, 87 (3) 196-208 doi:10.1017/s0016756800076925
Plain TextTrotter, F. M. (1950) The Devolatilization Equation for South Wales Coals. Geological Magazine, 87 (3) 196-208 doi:10.1017/s0016756800076925
In(1950, June) Geological Magazine Vol. 87 (3) Cambridge University Press (CUP)
Abstract/NotesSummaryRecent published work on the origin of the South Wales coals has shown that the “original deposition theory” is invalid; the pronounced devolatilization of the coals is due to a cause which operated after the formation of all of the seams and the rate of change of the volatiles is governed by a function which can be expressed as an empirical equation. Nevertheless minor variations in coal seam volatiles arising from differences in original composition of vegetation are recognized, and of several examples one is given from the Northumbrian geo-syncline where the highest volatiles are in the lowest Carboniferous Limestone coals and where the extreme variation throughout a sequence of 7,000 feet of coal-bearing strata is 11%. The minor variations lessen progressively if the coal seams become devolatilized. As illustrated by examples from American and European fields, a most important factor in coal seam devolatilization is orogenic pressure with incidental frictional heat.The present basis of comparison of essential coal-substances (fixed carbon and volatiles) is shown to be empirical; a mathematical comparison should be based on the original composition of the coal (not peat) substance. it is shown that 50% fixed carbon and 50% volatiles (d.a.f.) constitute good average figures for the original composition of the coal substance of Carboniferous coals. Loss of weight in devolatilized coals is suffered only by the volatiles so that the best basis of mathematical comparison is the 50% fixed carbon (d.a.f.). The volatile percentages of the South Wales seams when calculated on this basis all show a pronounced drop in values, and on the 50% fixed carbon basis it is necessary to find a new controlling function for the rate of change of volatiles in coal seams lying in vertical sequence. It is found that this is best expressed by the following exponential equation:where v2 and v1 represent the volatiles of the lower and upper seams respectively, y is the vertical distance in feet of v2 below v1; and θ is the angle of dip of the zero plane previously determined in South Wales as 5°.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 8, 2025 15:22:01
Go to top of page