Vote for your favorite mineral in #MinCup25! - Dioptase vs. Wavellite
It's a green, green world for kiwi #wavellite vs desert emerald #dioptase.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Stone, P., Evans, J. A. (1995) Nd-isotope study of provenance patterns across the British sector of the Iapetus Suture. Geological Magazine, 132 (5) 571-580 doi:10.1017/s0016756800021233

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNd-isotope study of provenance patterns across the British sector of the Iapetus Suture
JournalGeological Magazine
AuthorsStone, P.Author
Evans, J. A.Author
Year1995 (September)Volume132
Issue5
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756800021233Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID256703Long-form Identifiermindat:1:5:256703:1
GUID0
Full ReferenceStone, P., Evans, J. A. (1995) Nd-isotope study of provenance patterns across the British sector of the Iapetus Suture. Geological Magazine, 132 (5) 571-580 doi:10.1017/s0016756800021233
Plain TextStone, P., Evans, J. A. (1995) Nd-isotope study of provenance patterns across the British sector of the Iapetus Suture. Geological Magazine, 132 (5) 571-580 doi:10.1017/s0016756800021233
In(1995, September) Geological Magazine Vol. 132 (5) Cambridge University Press (CUP)
Abstract/NotesAbstractThe Southern Uplands greywacke succession (Scotland) accumulated at the Laurentian margin of the Iapetus Ocean. It was sequentially incorporated into an imbricate, accretionary thrust complex until closure of the ocean. Thereafter the thrust belt propagated across the suture zone as a foreland thrust belt directed towards the hinterland of Avalonia. A foreland basin migrating ahead of the thrust belt was the depositional site for the southernmost Southern Uplands units and the Windermere Supergroup (English Lake District). A Nd-isotope study has shown that juvenile ophiolitic detritus was introduced into the oldest, mid-Ordovician, Southern Uplands greywackes before two distinct provenance areas evolved: one supplying juvenile andesitic detritus in addition to a quartzo-feldspathic component, the other Proterozoic and exclusively quartzo-feldspathic. Bimodal composition continued into the early Silurian but was overlapped from late in the Ordovician by greywackes with intermediate Nd-isotope composition. This was not a simple mixing effect since the andesitic component is not represented and the necessary juvenile component comes from granodioritic and felsitic lithologies. Intermediate eNd values are then a consistent feature through the Silurian both in the younger strata of the Southern Uplands and in the earliest foreland basin turbidites of the Windermere Supergroup. The transition suggests cessation of volcanicity and erosion of deeper levels of the provenance terrane(s), possibly linked to the evolution of the basin system from active margin, accretion-related, to a foreland setting. To the north of the Southern Uplands terrane, beyond the Southern Upland Fault, a Caradoc to Wenlock turbidite sequence occupies inliers within the Midland Valley. The older greywackes contain abundant juvenile ophiolite and plutonic detritus in addition to a quartzofeldspathic metamorphic component; there are similarities with the most northerly part of the Southern Uplands. From the late Ordovician, εNd values systematically decline so that early Llandovery Midland Valley greywackes are exclusively quartzo-feldspathic, derived from an ancient source indistinguishable in isotopic terms from that periodically supplying the Southern Uplands. In general the Llandovery Midland Valley provenance was significantly more mature than that contemporaneously supplying the Southern Uplands. Thereafter, the Midland Valley latest Llandovery and early Wenlock greywackes contain a higher proportion of a juvenile component, and by the early Wenlock, greywackes from the Midland Valley, Southern Uplands and Lake District terranes are similar in terms of εNd. A common provenance seems likely and suggests that by the mid-Silurian all three terrenes were in close proximity.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 10, 2025 19:50:47
Go to top of page