Vote for your favorite mineral in #MinCup25! - Cuprosklodowskite vs. Ikaite
It's radioactive #cuprosklodowskite vs ephemeral #ikaite for today's match.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

ABDEL-RAHMAN, ABDEL-FATTAH M., NASSAR, PHILIP E. (2004) Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological Magazine, 141 (5) 545-563 doi:10.1017/s0016756804009604

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleCenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon
JournalGeological Magazine
AuthorsABDEL-RAHMAN, ABDEL-FATTAH M.Author
NASSAR, PHILIP E.Author
Year2004 (September)Volume141
Issue5
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756804009604Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID259500Long-form Identifiermindat:1:5:259500:3
GUID0
Full ReferenceABDEL-RAHMAN, ABDEL-FATTAH M., NASSAR, PHILIP E. (2004) Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological Magazine, 141 (5) 545-563 doi:10.1017/s0016756804009604
Plain TextABDEL-RAHMAN, ABDEL-FATTAH M., NASSAR, PHILIP E. (2004) Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological Magazine, 141 (5) 545-563 doi:10.1017/s0016756804009604
In(2004, September) Geological Magazine Vol. 141 (5) Cambridge University Press (CUP)
Abstract/NotesThe Cenozoic volcanic field of the Akkar region in northern Lebanon consists of a thick succession (200 m) of basaltic lava flows, erupted at the junction between a restraining bend (the Yammouneh transform fault) and its northern extension (the Ghab transform) in Syria. Both faults are part of the Dead Sea transform fault system, which represents the boundary between the Arabian and African plates and the Levantine subplate. The lavas are made up of about 15–25 vol. % olivine (Fo79–84), 30–40 % clinopyroxene (salite), 40–50 % plagioclase (An58–67), and opaque Fe–Ti oxides (∼ 5 %). Geochemically, they exhibit a narrow range of SiO2 (44.6 to 47.0 wt %), and MgO (2.9 to 7.5 wt %), are relatively enriched in TiO2 (2.0 to 2.9 wt %), and are classified as alkali basalts. Mg-numbers range from 0.32 to 0.59, with an average of 0.47. The rocks are enriched in incompatible trace elements such as Zr (98–184 ppm), Nb (16–39 ppm) and Y (25–34 ppm). The REE patterns are fractionated ((La/Yb)N=8.2), and are generally parallel to subparallel. Such compositions are typical of those of HIMU-OIB and plume-related magmas. Elemental ratios such as K/P (2.9), La/Ta (21.8), La/Nb (0.80), Nb/Y (0.92) and Th/Nb (0.35), and the low average SiO2 content (46.1 wt %) suggest that the magma was subjected to minimal crustal contamination. This may be related to a rapid ascent of the parental magma, in agreement with the nature (mafic, oceanic crust-like) and the thickness (only about 12 km) of the crust of the Eastern Mediterranean region. Cenozoic volcanism in this region is interpreted to have occurred in association with an episode of localized extension, particularly at the junction between the Yammouneh restraining bend and the Dead Sea–Ghab Transform (that is, in a transtensional tectonic regime). The 143Nd/144Nd isotopic composition of the basaltic rocks of northern Lebanon ranges from 0.512842 to 0.512934 (εNd=4.0 to 5.8), and 87Sr/86Sr from 0.703317 to 0.703579, suggesting a HIMU-like mantle source. Modelling indicates that the magma was produced by a small degree of partial melting (F=2 %) of a primitive, garnet lherzolitic mantle source, possibly containing a minor spinel component.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 14, 2025 05:07:25
Go to top of page