Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Barton, Michael, Hamilton, D. L. (1982) Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineralogical Magazine, 45 (337) 267-278 doi:10.1180/minmag.1982.045.337.30

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleWater-undersaturated melting experiments bearing upon the origin of potassium-rich magmas
JournalMineralogical MagazineISSN0026-461X
AuthorsBarton, MichaelAuthor
Hamilton, D. L.Author
Year1982Volume45
Issue337
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_45/45-337-267.pdf+
DOIdoi:10.1180/minmag.1982.045.337.30Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID3340Long-form Identifiermindat:1:5:3340:8
GUID0
Full ReferenceBarton, Michael, Hamilton, D. L. (1982) Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineralogical Magazine, 45 (337) 267-278 doi:10.1180/minmag.1982.045.337.30
Plain TextBarton, Michael, Hamilton, D. L. (1982) Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineralogical Magazine, 45 (337) 267-278 doi:10.1180/minmag.1982.045.337.30
In(1982) Mineralogical Magazine Vol. 45 (337) Mineralogical Society
Abstract/NotesAbstractThe water-undersaturated melting relationships of an orendite (with 1.23% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been determined at pressures up to 30 kbar. The dominant liquidus and near-liquidus phases are leucite, olivine, orthopyroxene, clinopyroxene, and garnet. Leucite is stable only at pressures below 5 kbar, but at 27 kbar, minor olivine, orthopyroxene, clinopyroxene, and garnet crystallize simultaneously at or near the liquidus. The following reaction relationships occur with falling temperature in the orendite magma: (a) a reaction between olivine and melt to yield orthopyroxene at pressures above 12 kbar; (b) a reaction between olivine and melt to yield phlogopite at pressures below 12 kbar; (c) a reaction between olivine, orthopyroxene and melt to yield phlogopite and probably clinopyroxene at pressures above 12 kbar; (d) a reaction between leucite and melt to yield sanidine at pressures below 5 kbar. Electron microprobe analyses demonstrate that the ortho- and clinopyroxenes crystallized from orendite are aluminium-poor; the clinopyroxenes contain insufficient aluminium to balance sodium and titanium (Al < Na+2Ti) and these elements must either be partly balanced by (undetermined) chromium or ferric iron or be involved in substitutions which do not require trivalent ions for charge balance. The experimental results indicate that relatively silica-rich potassic magmas such as orendite form under water-undersaturated (essentially carbon dioxide free) conditions at pressures of about 27 kbar by small degrees of melting of phlogopite-garnet-lherzolite or by larger degrees of melting of peridotite which has been enriched in potassium and incompatible elements. The peralkalinity of some potassic magmas (such as orendite and wyomingite) could reflect a primary geochemical characteristic of the source rock, but could also result from the melting of phlogopite in the presence of residual pyroxenes. The association of silica-poor, mafic madupites and relatively silica-rich orendites and wyomingites in the Leucite Hills can be explained in terms of the relative effects of water and carbon dioxide on melting processes within the upper mantle.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 30, 2025 06:51:15
Go to top of page