Vote for your favorite mineral in #MinCup25! - Calcite vs. Perovskite
This match of heavy hitters is bound to end in heartbreak as classic calcite faces off against futuristic perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Frey, Robert W., Howard, James D. (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology, 64 (5) 803-820 doi:10.1017/s0022336000019004

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleTrace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah
JournalJournal of Paleontology
AuthorsFrey, Robert W.Author
Howard, James D.Author
Year1990 (September)Volume64
Issue5
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0022336000019004Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID415049Long-form Identifiermindat:1:5:415049:1
GUID0
Full ReferenceFrey, Robert W., Howard, James D. (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology, 64 (5) 803-820 doi:10.1017/s0022336000019004
Plain TextFrey, Robert W., Howard, James D. (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology, 64 (5) 803-820 doi:10.1017/s0022336000019004
In(1990, September) Journal of Paleontology Vol. 64 (5) Cambridge University Press (CUP)
Abstract/NotesIn Coal Creek Canyon, Utah, the Spring Canyon Member of the Blackhawk Formation is divisible into four regressive hemicycles of deposition, each representing the downdip part of a nearshore-to-offshore sequence. The first and fourth hemicycles are best developed. Individual bedding units span middle-shoreface to lower-offshore lithofacies, the latter corresponding to a thin intertongue of Mancos Shale.Trace fossil assemblages include ~22 ichnospecies and 17 ichnogenera: Ancorichnus, Aulichnites, Chondrites, Cylindrichnus, Ophiomorpha, Palaeophycus, Phoebichnus, Planolites, Rosselia, Schaubcylindrichnus, Scolicia, Skolithos, Taenidium, Teichichnus, Terebellina, Thalassinoides, and Uchirites. Diversity and abundance of ichnospecies are greater in nearshore than in offshore lithofacies. Distal deposits are typified by obscure bioturbate textures: Cylindrichnus concentricus, Palaeophycus heberti, and Rosselia socialis are prevalent through the remainder of the lithofacies suite. Ophiomorpha irregulaire and Schaubcylindrichnus coronus are most common in middle-shoreface beds and Chondrites ichnosp. in upper-offshore beds; Ophiomorpha nodosa and O. annulata also are common in this part of the sequence.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 4, 2025 20:00:10
Go to top of page