Vote for your favorite mineral in #MinCup25! - Zunyite vs. Molybdenite
It's the visually-unmistakable #zunyite vs the physically funky #molybdenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Brower, James C. (2013) Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of northern Iowa and southern Minnesota. Journal of Paleontology, 87 (1) 16-43 doi:10.1666/11-118r.1

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitlePaleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of northern Iowa and southern Minnesota
JournalJournal of Paleontology
AuthorsBrower, James C.Author
Year2013 (January)Volume87
Issue1
PublisherCambridge University Press (CUP)
DOIdoi:10.1666/11-118r.1Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID422022Long-form Identifiermindat:1:5:422022:4
GUID0
Full ReferenceBrower, James C. (2013) Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of northern Iowa and southern Minnesota. Journal of Paleontology, 87 (1) 16-43 doi:10.1666/11-118r.1
Plain TextBrower, James C. (2013) Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of northern Iowa and southern Minnesota. Journal of Paleontology, 87 (1) 16-43 doi:10.1666/11-118r.1
In(2013, January) Journal of Paleontology Vol. 87 (1) Cambridge University Press (CUP)
Abstract/NotesThe Dunleith Formation echinoderms lived on a shallow water carbonate platform (Benthic Assemblages outer 2 and 3 during the latter part of the Dunleith Regressive Cycle). The echinoderms were buried rapidly by storms or a volcanic ash bed in one example. The presence of complete specimens, entire crowns, attachment structures, and excellent preservation strongly suggests that these assemblages reflect in situ communities on the seafloor that have not been significantly mixed, transported, or concentrated in time. Most taxa are suspension feeders, namely 21 crinoids, one glyptocystitid rhombiferan, a paracrinoid, and two edrioasteroids, but a deposit feeding pleurocystitid rhombiferan is also common. Three assemblages are recognized and defined by their dominant taxa; in order of increasing depth, these are theCotylacrinna sandra,Pleurocystites strimplei, andCupulocrinus crossmaniassemblages. Substrates ranged from hard- or firm-ground carbonates to soft carbonate and siliciclastic muds. Diverse attachment structures are recognized: the recumbent stems of calceocrinids, lichenocrinids on shells, small distal stem tips, and round to lobate calcite pads cemented to shells or the substrate, open distal stem coils directly on the seabed or coiled around soft objects thereon, and large conical and highly modified cirrus holdfasts on hard- or firm-grounds. The echinoderms were located at levels ranging from the seafloor to almost a meter above, with maximum diversity at about 50 mm above the seafloor. The size frequency distributions of food particles and the ranges of ambient current velocities for successful feeding by the juveniles and adults of the common crinoids are modeled using filtration theory. The food particle size distributions and the current velocities for feeding are correlated with the arm or filtration fan morphology of the crinoids. Differences between these parameters tend to partially separate the feeding ecologies of species located at the same elevation. Nevertheless, considerable overlap remains between species for small sized food particles and the lower ranges of ambient current velocities for feeding. Except for theCotylacrinna sandraAssemblage, competition for space does not seem to have been important in regulating the ecological structure of the Dunleith crinoids. However, the deposit feeding pleurocystitids possibly competed for food and space in one example. The Dunleith assemblages are much more diverse with greater ecological complexity than seen in the relatively deep water fauna from the Upper Ordovician Trenton Group of the Walcott-Rust Quarry in New York (Benthic Assemblage 5).


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 12, 2025 21:51:17
Go to top of page