Vote for your favorite mineral in #MinCup25! - Dioptase vs. Wavellite
It's a green, green world for kiwi #wavellite vs desert emerald #dioptase.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Pearce, Andrew J. (1976) Geomorphic and hydrologic consequences of vegetation destruction, Sudbury, Ontario. Canadian Journal of Earth Sciences, 13 (10) 1358-1373 doi:10.1139/e76-141

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleGeomorphic and hydrologic consequences of vegetation destruction, Sudbury, Ontario
JournalCanadian Journal of Earth Sciences
AuthorsPearce, Andrew J.Author
Year1976 (October 1)Volume13
Issue10
PublisherCanadian Science Publishing
DOIdoi:10.1139/e76-141Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID474684Long-form Identifiermindat:1:5:474684:7
GUID0
Full ReferencePearce, Andrew J. (1976) Geomorphic and hydrologic consequences of vegetation destruction, Sudbury, Ontario. Canadian Journal of Earth Sciences, 13 (10) 1358-1373 doi:10.1139/e76-141
Plain TextPearce, Andrew J. (1976) Geomorphic and hydrologic consequences of vegetation destruction, Sudbury, Ontario. Canadian Journal of Earth Sciences, 13 (10) 1358-1373 doi:10.1139/e76-141
In(1976, October) Canadian Journal of Earth Sciences Vol. 13 (10) Canadian Science Publishing
Abstract/Notes Near-complete destruction of vegetation over 125 km2 near Sudbury, Ontario has increased denudation rates by two orders of magnitude and caused substantial changes in hydrologic regime. Denudation by channeled and unchanneled flow, measured with erosion pins on small plots (2–1000 m2) and a small drainage basin (0.09 km2), averaged 6000 m3/km2 (maximum 24 700 m3/km2) during summer and fall in 1971 and 1972. Maximum denudation occurred during late August to October. Snowmelt runoff in 1972 yielded 1000 m3/km2 of sediment. The weighted average denudation rate, including rates of bedrock disintegration (60–170 m3/km2/y; mean 120 m3/km2/y) is 3700 m3/km2/y.Runoff coefficients average 0.88 for events with return periods between 2 and 10 years; 25% of the May–October rainfall runs off as Hortonian overland flow. Estimated sedimentation rates for three flood-control structures indicate 25% storage depletion over a 50 year period; the return period of floods then able to be retained is reduced to 50 years, compared to the design parameters of 100 year 6 h rainfall (smaller structures) and 100–200 year 12 h rainfall, 6 h P.M.P. (largest structure).


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 10, 2025 21:46:01
Go to top of page