Vote for your favorite mineral in #MinCup25! - Stibnite vs. Perovskite
It's all about how minerals interact with humans as dramatic #stibnite faces off against futuristic #perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Dunlop, David J. (1979) A regional paleomagnetic study of Archean rocks from the Superior Geotraverse area, northwestern Ontario. Canadian Journal of Earth Sciences, 16 (10) 1906-1919 doi:10.1139/e79-178

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA regional paleomagnetic study of Archean rocks from the Superior Geotraverse area, northwestern Ontario
JournalCanadian Journal of Earth Sciences
AuthorsDunlop, David J.Author
Year1979 (October 1)Volume16
Issue10
PublisherCanadian Science Publishing
DOIdoi:10.1139/e79-178Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID476057Long-form Identifiermindat:1:5:476057:7
GUID0
Full ReferenceDunlop, David J. (1979) A regional paleomagnetic study of Archean rocks from the Superior Geotraverse area, northwestern Ontario. Canadian Journal of Earth Sciences, 16 (10) 1906-1919 doi:10.1139/e79-178
Plain TextDunlop, David J. (1979) A regional paleomagnetic study of Archean rocks from the Superior Geotraverse area, northwestern Ontario. Canadian Journal of Earth Sciences, 16 (10) 1906-1919 doi:10.1139/e79-178
In(1979, October) Canadian Journal of Earth Sciences Vol. 16 (10) Canadian Science Publishing
Abstract/Notes Preliminary paleomagnetic data are reported for Archean metavolcanics, felsic and mafic intrusives, gneisses, and iron formations from the Quetico, Shebandowan, and Wabigoon belts in the western Superior Structural Province. Eleven of the 23 formations sampled have been studied in detail using stepwise alternating-field demagnetization and, in some cases, thermal demagnetization. Two characteristic components of magnetization are revealed. One is widespread in occurrence and reasonably well grouped (D = 4.5°, I = + 55.7°, k = 17.9, α95 = 5.4°, N = 40 samples for the Shelley Lake granite for example). It is a regional magnetic overprint due to the Kenoran orogeny, acquired, according to the position of its paleopole (71.7°E, 77.3°N, δp = 5.5°, δm = 8 °for the Shelley Lake granite) on the Laurentian apparent polar wander path and to independent radiometric evidence, about −2600 Ma. The second magnetic component is spotty in occurrence, more prevalent in the Wabigoon belt than elsewhere, and everywhere rather scattered. The only fully reliable determination is D = 66.0°, I = −5.1 °(k = 10.2, α95 = 15°, N = 11 samples) for the Wabigoon gabbro. The corresponding paleopole is either 17.8°E, 13.1°N (δp = 7.5°, δm = 15°) falling at about −2800 Ma on the apparent polar wander path or the antipole of this direction, dating between −1350 and −1250 Ma. The younger date, implying a late ProterQzoic metamorphic event in the region, is more likely than the older age, which would require that the magnetization be primary or a pre-Kenoran overprint. The metamorphism seems to have occurred too early to have been caused by igneous activity ca. 1100 Ma in the nearby Keweenawan basin. About −2600 Ma, the region was in its present orientation, but at a latitude of 20 to 35°N and probably drifting northward. About −1250 Ma, the region was equatorial but rotated 90°, so that presently east–west trending greenstone belts were north–south. It is possible, but un-proven, that a paleoocean existed between the Wabigoon subprovince and the other belts about −1250 Ma, the Wabigoon region having since moved > 500 km westward (present-day direction) to its present location.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 18, 2025 18:40:15
Go to top of page