Vote for your favorite mineral in #MinCup25! - Jeremejevite vs. Haüyne
Are you ready for a battle of the blues? In a match of newcomers, volcanic gem hauyne is taking on rare jeremejevite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Baadsgaard, H., Lerbekmo, J. F. (1983) Rb–Sr and U–Pb dating of bentonites. Canadian Journal of Earth Sciences, 20 (8) 1282-1290 doi:10.1139/e83-113

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleRb–Sr and U–Pb dating of bentonites
JournalCanadian Journal of Earth Sciences
AuthorsBaadsgaard, H.Author
Lerbekmo, J. F.Author
Year1983 (August 1)Volume20
Issue8
PublisherCanadian Science Publishing
DOIdoi:10.1139/e83-113Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID477988Long-form Identifiermindat:1:5:477988:3
GUID0
Full ReferenceBaadsgaard, H., Lerbekmo, J. F. (1983) Rb–Sr and U–Pb dating of bentonites. Canadian Journal of Earth Sciences, 20 (8) 1282-1290 doi:10.1139/e83-113
Plain TextBaadsgaard, H., Lerbekmo, J. F. (1983) Rb–Sr and U–Pb dating of bentonites. Canadian Journal of Earth Sciences, 20 (8) 1282-1290 doi:10.1139/e83-113
In(1983, August) Canadian Journal of Earth Sciences Vol. 20 (8) Canadian Science Publishing
Abstract/Notes A 6 in. (15 cm) bentonite in the Z coal (Cretaceous–Tertiary boundary) in eastern Montana was sampled at four different places, and biotite, sanidine, and zircon were separated from the clay. U–Pb analyses of purified zircons yielded small systematic variations from concordant U–Pb dates. Plotting the data on a concordia diagram, a short linear discordia line intersects the concordia at [Formula: see text] with an MSWD of 1.16. The systematic variation of the four sets of zircon U–Pb data on the concordia plot may be an artifact of the sampling and purification procedure, or could result from natural sample variation from minor contamination. Biotite fractions of varying specific gravity were obtained for each of the four Z coal bentonite samples and (together with the matching purified sanidine fraction) were analysed for Rb–Sr dating. Excluding those lighter biotite fractions found to have lost 30% or more of their original Rb, an isochron was obtained giving an age of 63.7 ± 0.3 Ma with an initial 87Sr/86Sr ratio of 0.7061 ± 1 and an MSWD of 1.07.To investigate further the Rb–Sr variations in altered bentonite biotite, a large biotite sample from the Ordovician Kinnekulle A1 bentonite of southwestern Sweden was separated into 11 fractions of decreasing specific gravity. Rb–Sr analysis of these fractions also showed a departure from a linear isochron when more than about 30% of the original Rb had been lost. Chemical analysis and X-ray diffraction revealed the biotite-alteration process to be vermiculitization, but gave no definite reason why biotites that retain more than 70% of their original Rb give usable Rb–Sr data. Though some of the alteration may have taken place when the bentonite was deposited as an ash, most of the alteration probably occurred in recent times. The Kinnekulle A1 bentonite Rb–Sr isochron for biotite and sanidine gives an age of 447 ± 1 Ma with an initial 87Sr/86Sr ratio of 0.7094 ± 0.0003 and an MSWD of 3.7.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 3, 2025 09:45:07
Go to top of page