Vote for your favorite mineral in #MinCup25! - Zunyite vs. Molybdenite
It's the visually-unmistakable #zunyite vs the physically funky #molybdenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Ding, T. P., Schwarcz, H. P. (1984) Oxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario. Canadian Journal of Earth Sciences, 21 (3) 305-318 doi:10.1139/e84-033

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleOxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario
JournalCanadian Journal of Earth Sciences
AuthorsDing, T. P.Author
Schwarcz, H. P.Author
Year1984 (March 1)Volume21
Issue3
PublisherCanadian Science Publishing
DOIdoi:10.1139/e84-033Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID478206Long-form Identifiermindat:1:5:478206:7
GUID0
Full ReferenceDing, T. P., Schwarcz, H. P. (1984) Oxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario. Canadian Journal of Earth Sciences, 21 (3) 305-318 doi:10.1139/e84-033
Plain TextDing, T. P., Schwarcz, H. P. (1984) Oxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario. Canadian Journal of Earth Sciences, 21 (3) 305-318 doi:10.1139/e84-033
In(1984, March) Canadian Journal of Earth Sciences Vol. 21 (3) Canadian Science Publishing
Abstract/Notes The whole-rock oxygen isotopic composition of the main units of the Sudbury Irruptive and surrounding rocks has been studied, using samples from two traverses of the North Range and one of the South Range. Norite has an average δ18O of 6.7‰, about 1‰ greater than that of fresh oceanic basalts, and similar to that of some continental basalts. Granophyre is slightly richer in 18O (δ18O = 7.3‰). In neither unit is there significant correlation between δ18O and SiO2 content or degree of alteration as estimated by water content or microscopic appearance. The pervasive hydrous alteration of norite and granophyre apparently occurred in the presence of a small volume of water whose isotopic composition was buffered by the igneous rocks. Inclusion-free devitrified glass ("melt rock") and matrix from the Onaping Formation have δ18O values in the range 6.2 – 12.1‰. Its average δ18O is 8.2‰, comparable to that of Archean gneiss [Formula: see text], as required by the model for the origin of the formation as a fallback breccia from a meteoritic impact. However, the chemical composition of the Onaping rocks requires an admixture of rocks much more mafic than typical Archean gneiss (e.g., greywackes or gabbros of the Southern Province). Norites of the South Range are 1‰ heavier than those of the North Range, possibly due to assimilation of 18O-rich rocks of the McKim Formation. It has been suggested that the granophyre was produced through assimilation of Onaping rocks by the norite; this is consistent with the oxygen isotopic composition of the three rock types but not with their chemical compositions, which show the granophyre to be more depleted in MgO than the Onaping Formation. The granophyre's chemical composition is consistent with an origin by differentiation from a magma with a composition equivalent to that of the transition (oxide-rich) gabbro.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 12, 2025 03:39:28
Go to top of page