Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Payette, Serge, Boudreau, Francis (1984) Évolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie. Canadian Journal of Earth Sciences, 21 (3) 319-335 doi:10.1139/e84-034

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleÉvolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie
JournalCanadian Journal of Earth Sciences
AuthorsPayette, SergeAuthor
Boudreau, FrancisAuthor
Year1984 (March 1)Volume21
Issue3
PublisherCanadian Science Publishing
DOIdoi:10.1139/e84-034Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID478209Long-form Identifiermindat:1:5:478209:8
GUID0
Full ReferencePayette, Serge, Boudreau, Francis (1984) Évolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie. Canadian Journal of Earth Sciences, 21 (3) 319-335 doi:10.1139/e84-034
Plain TextPayette, Serge, Boudreau, Francis (1984) Évolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie. Canadian Journal of Earth Sciences, 21 (3) 319-335 doi:10.1139/e84-034
In(1984, March) Canadian Journal of Earth Sciences Vol. 21 (3) Canadian Science Publishing
Abstract/Notes The stratigraphy of surficial deposits located in a snow-patch site, at an altitude of 1200 m in the Mount Jacques-Cartier area, provides evidence of a Late Glacial to mid-Holocene deglaciation. During the Late Glacial, or at the beginning of the Holocene, the diamictons on the high summits of the McGerrigle Mountains were affected by a severe periglacial climate, responsible for the formation of most of the periglacial landforms, such as sorted polygons, sorted stripes, stone-banked lobes, and block fields. During the Holocene, these landforms were fossilized by vegetation, and podzolic soil profiles developed within the stony deposits. After the Hypsithermal, a cooling trend was registered in snow-patch sites, where gelifluction was active after ca. 5200, 3470 – 3340, 2500, 2100, 1860, 1490, and 650 BP. Subalpine meadows followed the opening of the forest, at least since 2200 BP, and were due to neoglacial cooling. Within the alpine belt, the coniferous cover regression is registered at least since 1400 BP. During the so-called Little Ice Age of the past centuries, conifers retracted because of periglacial activity, which was followed by the formation of sorted stripes and gelifluction lobes. The extinction of tree species in the alpine tundra is related to periglacial activity, an ecological situation rather specific to the high summits of Gaspé.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 22, 2025 18:01:23
Go to top of page