Vote for your favorite mineral in #MinCup25! - Calcite vs. Perovskite
This match of heavy hitters is bound to end in heartbreak as classic calcite faces off against futuristic perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Veillette, J. J. (1986) Former southwesterly ice flows in the Abitibi–Timiskaming region: implications for the configuration of the late Wisconsinan ice sheet. Canadian Journal of Earth Sciences, 23 (11) 1724-1741 doi:10.1139/e86-159

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleFormer southwesterly ice flows in the Abitibi–Timiskaming region: implications for the configuration of the late Wisconsinan ice sheet
JournalCanadian Journal of Earth Sciences
AuthorsVeillette, J. J.Author
Year1986 (November 1)Volume23
Issue11
PublisherCanadian Science Publishing
DOIdoi:10.1139/e86-159Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID478893Long-form Identifiermindat:1:5:478893:9
GUID0
Full ReferenceVeillette, J. J. (1986) Former southwesterly ice flows in the Abitibi–Timiskaming region: implications for the configuration of the late Wisconsinan ice sheet. Canadian Journal of Earth Sciences, 23 (11) 1724-1741 doi:10.1139/e86-159
Plain TextVeillette, J. J. (1986) Former southwesterly ice flows in the Abitibi–Timiskaming region: implications for the configuration of the late Wisconsinan ice sheet. Canadian Journal of Earth Sciences, 23 (11) 1724-1741 doi:10.1139/e86-159
In(1986, November) Canadian Journal of Earth Sciences Vol. 23 (11) Canadian Science Publishing
Abstract/Notes Measurements at some 300 cross-striated sites in the Abitibi–Timiskaming area of Quebec and Ontario revealed two former directions of ice flow: an older west-southwest one (230–270°) in the extreme western part of the area, and a younger, widespread south-southwest one (180–220°) in the region west of the Harricana – Lake McConnell glaciofluvial complex. These sets of older striae, whether one or both on the same outcrop, are almost everywhere crossed by marks of a younger ubiquitous flow to the south-southeast (130–170°). On the basis of striae directions measured below an older till and of three dates obtained from intertill (below the surficial till) nonglacial sediments in the Timmins and Matheson areas in Ontario and the Selbaie mine area in Quebec, the oldest west-southwest (230–270°) striae are tentatively associated with the west-southwest flow that deposited this lowermost till in early to mid-Wisconsinan time or earlier.The Harricana – Lake McConnell glaciofluvial system extends from James Bay to the vicinity of North Bay Ontario and probably continues farther south to the Lake Simcoe area. It is strictly an interlobate deglaciation feature and does not result from the converging flows of two coalescing glaciers. At the last glacial maximum the dominant ice-flow direction in the area was probably toward the southwest, across the space occupied by this glaciofluvial system, confirming the flow lines shown by most models of the late Wisconsinan ice sheet. Because none of the cross-striated outcrops showing marks of the former south-southwest (180–220°) and of the last south-southeast (130–170°) movements show evidence of differential weathering and because glacial transport was due to the former southwest movement at several locations, it is proposed that the cross-striations result from the same ice mass subjected to (1) a general change in flow direction from the southwest to the southeast and (2) a complete scission that led ultimately to the deposition of the Harricana – Lake McConnell glaciofluvial system in the interlobate position.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 4, 2025 02:39:14
Go to top of page