Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Lamontagne, Maurice (1987) Seismic activity and structural features in the Charlevoix region, Quebec. Canadian Journal of Earth Sciences, 24 (11) 2118-2129 doi:10.1139/e87-202

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleSeismic activity and structural features in the Charlevoix region, Quebec
JournalCanadian Journal of Earth Sciences
AuthorsLamontagne, MauriceAuthor
Year1987 (November 1)Volume24
Issue11
PublisherCanadian Science Publishing
DOIdoi:10.1139/e87-202Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID479315Long-form Identifiermindat:1:5:479315:5
GUID0
Full ReferenceLamontagne, Maurice (1987) Seismic activity and structural features in the Charlevoix region, Quebec. Canadian Journal of Earth Sciences, 24 (11) 2118-2129 doi:10.1139/e87-202
Plain TextLamontagne, Maurice (1987) Seismic activity and structural features in the Charlevoix region, Quebec. Canadian Journal of Earth Sciences, 24 (11) 2118-2129 doi:10.1139/e87-202
In(1987, November) Canadian Journal of Earth Sciences Vol. 24 (11) Canadian Science Publishing
Abstract/Notes The Charlevoix region is historically the most active earthquake zone in eastern Canada. Understanding the links between its seismicity and the faults of the region is important for the assessment of earthquake risk along the St. Lawrence Valley. The region has been monitored by a microseismic array since 1977, yielding accurate locations of the hypocentres. Previous analyses of data from the array indicated a relationship between the earthquakes and the St. Lawrence Valley paleorift faults. As a sequel to previous studies, the relationships between the seismic activity and the faults of the region were reexamined through the use of the composite P-nodal solutions, in an effort to clarify the nature of faulting in the seismic zone. The microseisms were partitioned into subsets of events on the basis of geological and hypocentre-trend considerations. The main objectives of this paper are to delineate the details of faulting within the Charlevoix region and to determine the effect of the impact crater on the nature of faulting in this area.Assuming a constant 6.2 km/s velocity model and using a data set of 107 events, composite fault-plane solutions were computed. The composite P-nodal solutions indicated that the Charlevoix impact crater modifies to a certain extent the focal-mechanism characteristics. Events outside the impact crater were found to be quite consistent in their polarity distribution on the focal sphere, suggesting similarity in their focal mechanisms. The composite mechanism of these events suggests a relationship between the earthquakes and the north–south faults mapped outside the impact crater. The magnitude mb (Lg) 5.0 earthquake of August 19, 1979, the largest event in the selected time window, had different fault planes than some of its aftershocks. Nevertheless, the polarity distribution of the aftershocks was in agreement with the average trend for the events outside the crater. Events inside the impact crater were found to be produced along more variable fault orientations, with an average trend similar to that of the rift fault system. It is proposed that the meteor impact weakened the rift faults and introduced its own fractures. The present earthquake activity probably occurs along these weak fault surfaces. The effect of the impact crater on the type of faulting versus depth is not readily discernible from available data. In general, meteor impacts do not leave neotectonic seismic signatures: the Charlevoix impact crater might represent a different case because of the presence of weakened paleorift faults.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 21, 2025 21:59:43
Go to top of page