Vote for your favorite mineral in #MinCup25! - Taenite vs. Nontronite
It's a mineral found mostly in the farthest reaches of space vs one so common an exhaustive list of localities is nigh impossible as alloy #taenite faces off against clay #nontronite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Long, D. G. F., Copper, Paul (1987) Late Ordovician sand-wave complexes on Anticosti Island, Quebec: a marine tidal embayment?. Canadian Journal of Earth Sciences, 24 (9) 1821-1832 doi:10.1139/e87-173

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLate Ordovician sand-wave complexes on Anticosti Island, Quebec: a marine tidal embayment?
JournalCanadian Journal of Earth Sciences
AuthorsLong, D. G. F.Author
Copper, PaulAuthor
Year1987 (September 1)Volume24
Issue9
PublisherCanadian Science Publishing
DOIdoi:10.1139/e87-173Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID479712Long-form Identifiermindat:1:5:479712:2
GUID0
Full ReferenceLong, D. G. F., Copper, Paul (1987) Late Ordovician sand-wave complexes on Anticosti Island, Quebec: a marine tidal embayment?. Canadian Journal of Earth Sciences, 24 (9) 1821-1832 doi:10.1139/e87-173
Plain TextLong, D. G. F., Copper, Paul (1987) Late Ordovician sand-wave complexes on Anticosti Island, Quebec: a marine tidal embayment?. Canadian Journal of Earth Sciences, 24 (9) 1821-1832 doi:10.1139/e87-173
In(1987, September) Canadian Journal of Earth Sciences Vol. 24 (9) Canadian Science Publishing
Abstract/Notes Laterally discontinuous, mixed carbonate–siliciclastic sandstones in the upper Vaureal and lower Ellis Bay formations of Anticosti Island were deposited on an equatorial carbonate ramp with a slope of less than 1°. The 10–18 m thick sandstones are interpreted as subaqueous sand-wave complexes analogous to detached parts of modern shoreface-connected sand ridges. These record storm-enhanced, tidal modification of a northerly derived shoal retreat massif that may have formed in response to recovery from global sea-level lowstands in the Late Ordovician (Ashgill: late Rawtheyan – Hirnantian). The sand-wave complexes formed within a tidal embayment that was confined by the Precambrian Shield to the north and northwest by rising tectonic highlands of the Humber Zone in Newfoundland to the east, and by active tectonic highlands in the Quebec Appalachians (Gaspésie) to the south. Paleocurrent distributions, parallel to the western margins of the Strait of Belle Isle, suggest that the north end of the embayment was closed in Late Ordovician time. Low-diversity faunas within the sand units consist mostly of sowerbyellid, strophomenid, and rhynchonellid brachiopods, bivalves, gastropods, large aulacerid stromatoporoids, and large, domed favositid corals. These "sandy fades" faunas belong to communities significantly different from those found in the laterally interfingering and overlying carbonates and shales, suggesting that the sand waves played an important role in local community modification.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 15, 2025 06:20:26
Go to top of page