Vote for your favorite mineral in #MinCup25! - Silver vs. Baryte
Are you ready for beautiful utility as sparkling silver competes against hefty baryte?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Reid, I. D., Keen, C. E. (1990) Deep crustal structure beneath a rifted basin: results from seismic refraction measurements across the Jeanne d'Arc Basin, offshore eastern Canada. Canadian Journal of Earth Sciences, 27 (11) 1462-1471 doi:10.1139/e90-155

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleDeep crustal structure beneath a rifted basin: results from seismic refraction measurements across the Jeanne d'Arc Basin, offshore eastern Canada
JournalCanadian Journal of Earth Sciences
AuthorsReid, I. D.Author
Keen, C. E.Author
Year1990 (November 1)Volume27
Issue11
PublisherCanadian Science Publishing
DOIdoi:10.1139/e90-155Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID480725Long-form Identifiermindat:1:5:480725:8
GUID0
Full ReferenceReid, I. D., Keen, C. E. (1990) Deep crustal structure beneath a rifted basin: results from seismic refraction measurements across the Jeanne d'Arc Basin, offshore eastern Canada. Canadian Journal of Earth Sciences, 27 (11) 1462-1471 doi:10.1139/e90-155
Plain TextReid, I. D., Keen, C. E. (1990) Deep crustal structure beneath a rifted basin: results from seismic refraction measurements across the Jeanne d'Arc Basin, offshore eastern Canada. Canadian Journal of Earth Sciences, 27 (11) 1462-1471 doi:10.1139/e90-155
In(1990, November) Canadian Journal of Earth Sciences Vol. 27 (11) Canadian Science Publishing
Abstract/Notes A crustal seismic refraction experiment was conducted across the south Jeanne d'Arc Basin, one of the rifted sedimentary basins on the Grand Banks, offshore eastern Canada, that developed in Mesozoic time in response to extension and rifting between the North American plate and the African, Iberian, and European plates. The primary objective of this experiment, which was carried out to correlate with an existing deep seismic reflection profile, was to delineate the deep crustal geometry below the basin. Ten ocean-bottom seismometers were deployed across the basin and recorded signals from a large air-gun array. The results show that the crust is primarily composed of two layers, with velocities of 5.8–6.1 and 7.2 km/s, respectively. There is very little relief on the Moho across the basin, with only a 2 km step, from a depth of 37 to 35 km, occurring west of the basin. There is, however, considerable complexity of crustal structure, particularly near Moho depths. These results are valuable when used in conjunction with other data in the region, in particular gravity and deep seismic reflection data. The seismic reflection and refraction data sets together give a fairly complete picture of crustal geometry in the crust. The flat Moho below the basin is compatible with the detachment of the major basin-bounding fault in the lower crust or at the Moho, as seen on the reflection data. The 7.2 km/s layer is not restricted to the zone of Mesozoic crustal extension below the basin, but occurs also below relatively unextended parts of the crust. This layer may represent basaltic intrusion or underplating during a rifting event. It may also correspond to the reflective lower crust observed on the deep seismic reflection data. These results provide strong constraints on models describing the origin and evolution of this and other rifted basins.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 5, 2025 22:43:27
Go to top of page