Vote for your favorite mineral in #MinCup25! - Silver vs. Baryte
Are you ready for beautiful utility as sparkling silver competes against hefty baryte?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Desloges, Joseph R., Gilbert, Robert (1991) Sedimentary record of Harrison Lake: implications for deglaciation in southwestern British Columbia. Canadian Journal of Earth Sciences, 28 (5) 800-815 doi:10.1139/e91-069

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleSedimentary record of Harrison Lake: implications for deglaciation in southwestern British Columbia
JournalCanadian Journal of Earth Sciences
AuthorsDesloges, Joseph R.Author
Gilbert, RobertAuthor
Year1991 (May 1)Volume28
Issue5
PublisherCanadian Science Publishing
DOIdoi:10.1139/e91-069Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID481306Long-form Identifiermindat:1:5:481306:8
GUID0
Full ReferenceDesloges, Joseph R., Gilbert, Robert (1991) Sedimentary record of Harrison Lake: implications for deglaciation in southwestern British Columbia. Canadian Journal of Earth Sciences, 28 (5) 800-815 doi:10.1139/e91-069
Plain TextDesloges, Joseph R., Gilbert, Robert (1991) Sedimentary record of Harrison Lake: implications for deglaciation in southwestern British Columbia. Canadian Journal of Earth Sciences, 28 (5) 800-815 doi:10.1139/e91-069
In(1991, May) Canadian Journal of Earth Sciences Vol. 28 (5) Canadian Science Publishing
Abstract/Notes A sedimentary record from 60 km long Harrison Lake was constructed by using 3.5 kHz subbottom acoustic profiles and gravity cores of surface sediments. In places, the glaciolacustrine sediments exceed 70 m in thickness and represent the entire deglacial and postglacial accumulation record. An upper, acoustically transparent layer decreases in thickness from 12 to 4 m. southward from the upper lake. Cores from the upper metre of this layer demonstrate that deposition is dominated by settling of suspended sediment transported in a laterally mixed, wind-driven surface plume from the north. Depositional rates, inferred from 14C dating of organic macrofossils and counting of probable annual laminated couplets in the cores, are almost 2 mm/a in the north and decline to less than 0.1 mm/a in the south. Hence, the upper acoustic layer accounts for all postglacial (last 10 500 years BP) lacustrine deposition, with most of the sediment derived from Lillooet River. A lower, thicker (12–22 m), acoustically stratified layer is interpreted as high-energy glaciolacustrine deposits. This large volume of deglaciation sediment is derived from two sources: (i) ice retreating rapidly northwest up the Lillooet valley, which may have existed for no more than 400 years in the lower valley prior to opening of Lillooet Lake (which now traps most sediment derived from the upper basin); and (ii) inflow from the south as the late-glacial Fraser River rapidly built a delta north from the sill at Harrison Hot Springs. Despite known higher sea levels during deglaciation of the eastern Fraser Lowland, we have no evidence for a marine incursion.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 5, 2025 02:58:05
Go to top of page