Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hicock, Stephen R., Dreimanis, Aleksis (1992) Deformation till in the Great Lakes region: implications for rapid flow along the south-central margin of the Laurentide Ice Sheet. Canadian Journal of Earth Sciences, 29 (7) 1565-1579 doi:10.1139/e92-123

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleDeformation till in the Great Lakes region: implications for rapid flow along the south-central margin of the Laurentide Ice Sheet
JournalCanadian Journal of Earth Sciences
AuthorsHicock, Stephen R.Author
Dreimanis, AleksisAuthor
Year1992 (July 1)Volume29
Issue7
PublisherCanadian Science Publishing
DOIdoi:10.1139/e92-123Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID481812Long-form Identifiermindat:1:5:481812:4
GUID0
Full ReferenceHicock, Stephen R., Dreimanis, Aleksis (1992) Deformation till in the Great Lakes region: implications for rapid flow along the south-central margin of the Laurentide Ice Sheet. Canadian Journal of Earth Sciences, 29 (7) 1565-1579 doi:10.1139/e92-123
Plain TextHicock, Stephen R., Dreimanis, Aleksis (1992) Deformation till in the Great Lakes region: implications for rapid flow along the south-central margin of the Laurentide Ice Sheet. Canadian Journal of Earth Sciences, 29 (7) 1565-1579 doi:10.1139/e92-123
In(1992, July) Canadian Journal of Earth Sciences Vol. 29 (7) Canadian Science Publishing
Abstract/Notes Structural and lithologic data indicate that, while deposited under actively moving ice, considerable portions of three muddy calcareous subglacial tills in the Great Lakes region probably experienced some component of ductile deformation. Viscous till flow and ductile shear are invoked to explain a combination of features such as recumbent isoclinal folds, unlithified sediment clasts, mixed ostracode shells, reversed stone lee ends, girdle and transverse fabrics, irregular stone pavements, fine striae following stone curves, and inconsistent stone striae and a-axes. Deforming, fine-textured subglacial till is considered as a subhorizontal shear zone, rheologically layered with associated structures (in descending order): ductile (e.g., isoclinal folds), brittle–ductile (e.g., fissility), and brittle (e.g., till wedges). Rheology would be controlled mainly by till pore water content, matrix texture, and stone content. Spatial and temporal superposition of rheologies and subglacial processes probably occurred while some fine tills were forming. Fine deformation till may be especially common around areas of the Great Lakes region where proglacial mud and weak bedrock were remoulded as ice travelled along major basins and troughs. In such areas, under a wet-based glacier, resulting till would have been too weak to sustain a large shear stress or inhibit rapid ice flow over it. Instead, in these places, the till was probably water saturated, accounting for most of the glacial flow, and protected the substrate from extensive deformation while effectively acting as a lubricant to overriding ice. Areas of fine deformation till probably represent areas of former low subglacial fluid conductivity and rapid glacial flow. In other areas, subglacial sheet flow of meltwater may have accelerated glacial flow. These two types of areas may have been connected at times under zones of ice streaming and (or) surging.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 30, 2025 19:37:14
Go to top of page