Vote for your favorite mineral in #MinCup25! - Calcite vs. Perovskite
This match of heavy hitters is bound to end in heartbreak as classic calcite faces off against futuristic perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Salisbury, Matthew H., Fountain, David M. (1994) The seismic velocity and Poisson's ratio structure of the Kapuskasing uplift from laboratory measurements. Canadian Journal of Earth Sciences, 31 (7) 1052-1063 doi:10.1139/e94-095

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe seismic velocity and Poisson's ratio structure of the Kapuskasing uplift from laboratory measurements
JournalCanadian Journal of Earth Sciences
AuthorsSalisbury, Matthew H.Author
Fountain, David M.Author
Year1994 (July 1)Volume31
Issue7
PublisherCanadian Science Publishing
DOIdoi:10.1139/e94-095Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482506Long-form Identifiermindat:1:5:482506:1
GUID0
Full ReferenceSalisbury, Matthew H., Fountain, David M. (1994) The seismic velocity and Poisson's ratio structure of the Kapuskasing uplift from laboratory measurements. Canadian Journal of Earth Sciences, 31 (7) 1052-1063 doi:10.1139/e94-095
Plain TextSalisbury, Matthew H., Fountain, David M. (1994) The seismic velocity and Poisson's ratio structure of the Kapuskasing uplift from laboratory measurements. Canadian Journal of Earth Sciences, 31 (7) 1052-1063 doi:10.1139/e94-095
In(1994, July) Canadian Journal of Earth Sciences Vol. 31 (7) Canadian Science Publishing
Abstract/Notes The compressional (Vp) and shear (Vs) wave velocity structure of the Kapuskasing uplift have been determined as a function of depth, propagation direction, and polarization from laboratory velocity measurements to confining pressures of 600 MPa on oriented samples from known structural levels of the complex. Based on the relative field abundances of the lithologies measured, the three principal terranes exposed in the uplift are characterized at depth by the following average values of Vp, Vs, and apparent Poisson's ratio, σa: (i) Michipicoten greenstone bell (greenschist, depth 0–6 km, Vp = 6.6 km/s, Vs = 3.9 km/s, σa = 0.235); (ii) Wawa gneiss terrane (amphibolite, depth 6–17 km, Vp = 6.5 km/s, Vs = 3.8 km/s, σa = 0.24); and (iii) Kapuskasing structural zone (granulite, depth 17–23 km, Vp = 6.9 km/s, Vs = 3.9 km/s, σa = 0.27). Although anisotropic lithologies such as paragneiss or mafic gneiss are present at all levels and tend to increase in abundance with depth, only in the deepest level (the Kapuskasing zone) are they sufficiently abundant and oriented to produce significant regional seismic anisotropy (transversely isotropic with Vp and Vs fast in the horizontal plane) and detectable shear wave splitting (ΔVs = 0.1 km/s).A comparison between the laboratory data and velocity models determined for the same crustal section from Lithoprobe refraction studies shows excellent agreement, confirming that the lithologies exposed in the Kapuskasing uplift can be projected downdip to the upper–lower crust transition, or Conrad discontinuity, at about 25 km. Below this depth, high P-wave velocities (7.0–7.6 km/s) suggest that the lower crust is more mafic or garnet rich. Similarities between the velocity structure of the Kapuskasing uplift and other sites in the Canadian Shield suggest that the observed crustal section is fairly typical of Archean continental crust.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 4, 2025 02:39:46
Go to top of page