Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Plint, Heather E., Gordon, Terence M. (1997) The Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon. Canadian Journal of Earth Sciences, 34 (2) 105-126 doi:10.1139/e17-009

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon
JournalCanadian Journal of Earth Sciences
AuthorsPlint, Heather E.Author
Gordon, Terence M.Author
Year1997 (February 1)Volume34
Issue2
PublisherCanadian Science Publishing
DOIdoi:10.1139/e17-009Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482912Long-form Identifiermindat:1:5:482912:0
GUID0
Full ReferencePlint, Heather E., Gordon, Terence M. (1997) The Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon. Canadian Journal of Earth Sciences, 34 (2) 105-126 doi:10.1139/e17-009
Plain TextPlint, Heather E., Gordon, Terence M. (1997) The Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon. Canadian Journal of Earth Sciences, 34 (2) 105-126 doi:10.1139/e17-009
In(1997, February) Canadian Journal of Earth Sciences Vol. 34 (2) Canadian Science Publishing
Abstract/Notes The Finlayson Lake Fault Zone forms a fundamental, but little studied, tectonic boundary between strata of autochthonous North America and the accreted Slide Mountain and Yukon–Tanana terranes in southeastern Yukon. A structural and petrologic study was undertaken to examine the depositional environment of the Slide Mountain Terrane, its tectono-thermal evolution in the fault zone, and its relationship with the Yukon–Tanana Terrane. The Slide Mountain and Yukon–Tanana terranes are divisible into units dominated by metavolcanic and metasedimentary rocks. Field observations and whole-rock geochemistry indicate that Slide Mountain greenstone is ocean-floor basalt deposited in a deep submarine basin with a proximal terrigenous sediment influx. Either a marginal- or ocean-basin setting is supported by the data. Slide Mountain greenstone is thrust northeastward over metasedimentary rocks of Slide Mountain Terrane and southwestward over rocks of the Yukon–Tanana Terrane. Regional metamorphic grade ranges from subgreenschist to greenschist facies. Pressure–temperature estimates for the subgreenschist–greenschist facies transition are 270–310 °C and 2.1–3.6 kbar (1 kbar = 100 MPa), based on assumed geothermal gradients and the reaction isograd Pmp + Chl = Act + Ep + H2O. Metamorphic peak postdates motion along the westernmost reverse fault that juxtaposes the Slide Mountain and Yukon–Tanana terranes. We interpret the Finlayson Lake Fault Zone as a northeasterly directed thrust sequence disrupted by synmetamorphic back thrusts. The back thrusting may be the consequence of shortening in the upper crust, or larger scale processes such as "tectonic wedging" of Yukon–Tanana Terrane under Slide Mountain Terrane.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 23, 2025 09:11:01
Go to top of page