Vote for your favorite mineral in #MinCup25! - Topaz vs. Kyanite
It's a battle of high-pressure colourful beauties of #topaz vs #kyanite. Which can stand the heat of round 1?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zelt, B C, Ellis, R M (1999) Receiver-function studies in the Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences, 36 (4) 585-603 doi:10.1139/e98-109

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleReceiver-function studies in the Trans-Hudson Orogen, Saskatchewan
JournalCanadian Journal of Earth Sciences
AuthorsZelt, B CAuthor
Ellis, R MAuthor
Year1999 (April 7)Volume36
Issue4
PublisherCanadian Science Publishing
DOIdoi:10.1139/e98-109Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID483225Long-form Identifiermindat:1:5:483225:0
GUID0
Full ReferenceZelt, B C, Ellis, R M (1999) Receiver-function studies in the Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences, 36 (4) 585-603 doi:10.1139/e98-109
Plain TextZelt, B C, Ellis, R M (1999) Receiver-function studies in the Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences, 36 (4) 585-603 doi:10.1139/e98-109
In(1999, April) Canadian Journal of Earth Sciences Vol. 36 (4) Canadian Science Publishing
Abstract/Notes Teleseismic events were recorded on an array of three-component broadband and short-period seismographs in the Trans-Hudson Orogen over a period of almost 3 years. Receiver functions calculated from these data were used in a forward-modelling study to derive the local shear-wave velocity structure beneath 20 stations. Station FFC (Flin Flon), located within the Flin Flon belt, was one of two stations situated on bedrock and produced the highest quality receiver functions. The FFC velocity model correlates well with an interpretation of nearby reflection data and features a distinct lower crust interpreted as Archean basement which cores the entire Reindeer Zone. Both radial and tangential receiver functions at FFC show strong evidence for a northeasterly dipping shallow boundary within rocks of the Flin Flon belt with a dip angle of 20°. Total crustal thickness is 37 km. Eighteen stations are situated on Phanerozoic sedimentary cover ranging in thickness from 0.4 km to greater than 2 km. Receiver functions at these stations display prominent high-amplitude, low-frequency reverberations that obscure more subtle phases associated with deeper structure. Because of this, only the gross crustal velocity structure can be constrained by modelling. Depth to Moho, which is 40-43 km at most stations, is the most strongly constrained feature. Stations with relatively thick crust within the Glennie domain suggest a connection between two regions of thick crust previously inferred from reflection and refraction data. This crustal root, presumably associated with a structural culmination imaged by reflection data and cored by Archean basement, is confined to the southwestern Glennie domain. One-dimensional modelling results show that the reverberations can be explained by a thin layer (<0.7 km) at the top of the sediments with a very high Poisson's ratio (0.4-0.48). The degree to which later arrivals are affected by reverberations is directly related to the parameters of this uppermost layer. We present the results of synthetic studies that demonstrate the sensitivity of receiver functions to this type of feature.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 13, 2025 15:45:32
Go to top of page