Vote for your favorite mineral in #MinCup25! - Silver vs. Baryte
Are you ready for beautiful utility as sparkling silver competes against hefty baryte?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

McDonough, Michael R, McNicoll, Vicki J, Schetselaar, Ernst M, Grover, Timothy W (2000) Geochronological and kinematic constraints on crustal shortening and escape in a two-sided oblique-slip collisional and magmatic orogen, Paleoproterozoic Taltson magmatic zone, northeastern Alberta. Canadian Journal of Earth Sciences, 37 (11) 1549-1573 doi:10.1139/e00-089

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleGeochronological and kinematic constraints on crustal shortening and escape in a two-sided oblique-slip collisional and magmatic orogen, Paleoproterozoic Taltson magmatic zone, northeastern Alberta
JournalCanadian Journal of Earth Sciences
AuthorsMcDonough, Michael RAuthor
McNicoll, Vicki JAuthor
Schetselaar, Ernst MAuthor
Grover, Timothy WAuthor
Year2000 (November 1)Volume37
Issue11
PublisherCanadian Science Publishing
DOIdoi:10.1139/e00-089Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID483323Long-form Identifiermindat:1:5:483323:3
GUID0
Full ReferenceMcDonough, Michael R, McNicoll, Vicki J, Schetselaar, Ernst M, Grover, Timothy W (2000) Geochronological and kinematic constraints on crustal shortening and escape in a two-sided oblique-slip collisional and magmatic orogen, Paleoproterozoic Taltson magmatic zone, northeastern Alberta. Canadian Journal of Earth Sciences, 37 (11) 1549-1573 doi:10.1139/e00-089
Plain TextMcDonough, Michael R, McNicoll, Vicki J, Schetselaar, Ernst M, Grover, Timothy W (2000) Geochronological and kinematic constraints on crustal shortening and escape in a two-sided oblique-slip collisional and magmatic orogen, Paleoproterozoic Taltson magmatic zone, northeastern Alberta. Canadian Journal of Earth Sciences, 37 (11) 1549-1573 doi:10.1139/e00-089
In(2000, November) Canadian Journal of Earth Sciences Vol. 37 (11) Canadian Science Publishing
Abstract/Notes The southern Taltson magmatic zone (south of 60°N) is a composite continental magmatic arc and collisional orogen resulting from the convergence of the Buffalo Head terrane with the Archean Churchill craton. Taltson basement (ca. 3.23.0 Ga and 2.42.14 Ga) and Rutledge River supracrustal gneisses (2.132.09 Ga) were intruded by voluminous I- and S-type magmatic rocks between 1.99 and 1.92 Ga. Taltson magmatic zone was deformed by three ductile shear zones: Leland Lakes, Charles Lake, and Andrew Lake, exhibiting both strike- and dip-lineated mylonitic domains. Kinematic data for shear zones are reported at microscopic, mesoscopic, and macroscopic (remotely sensed data) scale. We present field and UPb isotopic data (zircon and monazite) for magmatic and metamorphic rocks that constrain the timing of granulite to upper amphibolite-grade shearing in the Leland Lakes and Charles Lake (formerly Allan) shear zones to ca. 19381934 Ma. Foreland (easterly) vergent thrusting on the Andrew Lake shear zone is ca. 1932 Ma. Taltson shear zones were overprinted by widespread amphibolite- to greenschist-grade shearing, which is constrained by published 40Ar39Ar and KAr dates on hornblende and muscovite to between ca. 1900 and 1800 Ma. We propose a crustal architecture, resembling a crustal-scale asymmetric flower structure, in which the Charles Lakes shear zone formed the fundamental shear zone of a middle to lower crustal sinistral transpression system that accommodated southward escape of crust in the upper plate of an oblique continental subductioncollision zone, with shortening partitioned into synchronous outwardly vergent thrust systems to the east and west of the main shear zone.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 5, 2025 02:58:00
Go to top of page