Vote for your favorite mineral in #MinCup25! - Pectolite vs. Haüyne
It's a pair of striking blue beauties as #pectolite the uncrushable faces off against #hauyne, the phoenix from volcanic ashes!
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hynes, Andrew, Indares, Aphrodite, Rivers, Toby, Gobeil, André (2000) Lithoprobe line 55: integration of out-of-plane seismic results with surface structure, metamorphism, and geochronology, and the tectonic evolution of the eastern Grenville Province. Canadian Journal of Earth Sciences, 37 (2) 341-358 doi:10.1139/e99-076

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLithoprobe line 55: integration of out-of-plane seismic results with surface structure, metamorphism, and geochronology, and the tectonic evolution of the eastern Grenville Province
JournalCanadian Journal of Earth Sciences
AuthorsHynes, AndrewAuthor
Indares, AphroditeAuthor
Rivers, TobyAuthor
Gobeil, AndréAuthor
Year2000 (April 2)Volume37
Issue2
PublisherCanadian Science Publishing
DOIdoi:10.1139/e99-076Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID483354Long-form Identifiermindat:1:5:483354:7
GUID0
Full ReferenceHynes, Andrew, Indares, Aphrodite, Rivers, Toby, Gobeil, André (2000) Lithoprobe line 55: integration of out-of-plane seismic results with surface structure, metamorphism, and geochronology, and the tectonic evolution of the eastern Grenville Province. Canadian Journal of Earth Sciences, 37 (2) 341-358 doi:10.1139/e99-076
Plain TextHynes, Andrew, Indares, Aphrodite, Rivers, Toby, Gobeil, André (2000) Lithoprobe line 55: integration of out-of-plane seismic results with surface structure, metamorphism, and geochronology, and the tectonic evolution of the eastern Grenville Province. Canadian Journal of Earth Sciences, 37 (2) 341-358 doi:10.1139/e99-076
In(2000, April) Canadian Journal of Earth Sciences Vol. 37 (2) Canadian Science Publishing
Abstract/Notes Lithoprobe line 55, in the Grenville Province of eastern Quebec, provides unusually good control on the three-dimensional (3-D) geometry and structural relationships among the major lithological units there. Archean basement underlies the exposed Proterozoic rocks, along the entire seismic line, and there is a lateral ramp in this basement immediately behind a lobate stack of thrust slices of high-pressure metamorphic rocks comprising the Manicouagan Imbricate Zone (MIZ). Integration of the 3-D geometry with P-T and geochronological data allows derivation of a tectonic model for the region. The MIZ was buried to depths >60 km at 1050 Ma. Preservation of its high-pressure assemblages, and the absence of metamorphism at 990 Ma, which is characteristic of lower pressure metamorphic rocks that tectonically overlie them, indicates the MIZ rocks were rapidly unroofed, early in the tectonic history. There were two discrete pulses of crustal thickening during the Grenvillian Orogeny in this region. The first, involving imbrication of Labradorian and Pinwarian rocks that comprised part of southeast Laurentia, culminated in the Ottawan pulse at ca. 1050 Ma, and produced the high-pressure metamorphism of the MIZ. Its effects were rapidly reversed, with extrusion of the MIZ rocks to shallow crustal levels at ca. 1020 Ma. The crust was again thickened, with the Moho subsiding to depths >60 km, in the Rigolet pulse at ca. 990 Ma. The site of extrusion of the MIZ was probably controlled by the subsurface lateral ramp. High geothermal gradients indicate that extrusion may have been aided by lithospheric delamination in the crustal-thickening zone.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 17, 2025 06:01:11
Go to top of page