Vote for your favorite mineral in #MinCup25! - Carpathite vs. Leucite
Brace for oddness in a match between one of the very few hydrocarbon minerals carpathite and the temperature-flipping mineral leucite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Bierlein, Frank P, Smith, Paul K (2003) The Touquoy Zone deposit: an example of "unusual" orogenic gold mineralisation in the Meguma Terrane, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 40 (3) 447-466 doi:10.1139/e03-002

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe Touquoy Zone deposit: an example of "unusual" orogenic gold mineralisation in the Meguma Terrane, Nova Scotia, Canada
JournalCanadian Journal of Earth Sciences
AuthorsBierlein, Frank PAuthor
Smith, Paul KAuthor
Year2003 (March 1)Volume40
Issue3
PublisherCanadian Science Publishing
DOIdoi:10.1139/e03-002Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID483790Long-form Identifiermindat:1:5:483790:3
GUID0
Full ReferenceBierlein, Frank P, Smith, Paul K (2003) The Touquoy Zone deposit: an example of "unusual" orogenic gold mineralisation in the Meguma Terrane, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 40 (3) 447-466 doi:10.1139/e03-002
Plain TextBierlein, Frank P, Smith, Paul K (2003) The Touquoy Zone deposit: an example of "unusual" orogenic gold mineralisation in the Meguma Terrane, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 40 (3) 447-466 doi:10.1139/e03-002
In(2003, March) Canadian Journal of Earth Sciences Vol. 40 (3) Canadian Science Publishing
Abstract/Notes The Touquoy Zone deposit is host to disseminated gold mineralisation in metasiltstones of lower Palaeozoic age. From the close correlation between ore grades and the intersection of favourable stratigraphy and bounding faults, it is apparent that mineralisation is controlled by both structural and lithological influences. Within the ore zone, disseminated gold, arsenopyrite, pyrite, and rare base-metal sulphides are associated with a network of widely spaced, millimetre-scale, quartzcarbonate veinlets. Quasi-pervasive fluid flow and prolonged interaction with the host rocks resulted in a diffuse, but pronounced halo of wall-rock alteration that is characterized by the breakdown of detrital feldspar and metamorphic chlorite and the development of hydrothermal carbonate phases, K-mica, and disseminated sulphides. These mineralogical changes are accompanied by enrichment in CO2, K, Au, As, and S and depletion in Na across the ore zone. Vein formation occurred at between 250° and 350°C and pressures of less than 12 kbar (1 kbar = 100 MPa), corresponding to an estimated depth of between <2.8 and 6 km. Mineralisation resulted from the unmixing of an overpressured (low-salinity, CO2-rich) fluid in response to decreasing pressure during its ascent and penetration into permeable host rocks. Geological and geochemical features of mineralisation in the Touquoy Zone deposit are seen as convincing evidence for a close genetic association between disseminated-style and lode gold mineralisation in orogenic terrains, with the resulting style of mineralisation largely controlled by the overall structural geometry of the mineralising site, rheological properties, permeability and chemical receptiveness of the host rock, and structural level of emplacement.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 6, 2025 13:18:44
Go to top of page