Vote for your favorite mineral in #MinCup25! - Zunyite vs. Molybdenite
It's the visually-unmistakable #zunyite vs the physically funky #molybdenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Fröbisch, Jörg (2006) Locomotion in derived dicynodonts (Synapsida, Anomodontia): a functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus. Canadian Journal of Earth Sciences, 43 (9) 1297-1308 doi:10.1139/e06-031

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLocomotion in derived dicynodonts (Synapsida, Anomodontia): a functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus
JournalCanadian Journal of Earth Sciences
AuthorsFröbisch, JörgAuthor
Year2006 (September 1)Volume43
Issue9
PublisherCanadian Science Publishing
DOIdoi:10.1139/e06-031Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID484225Long-form Identifiermindat:1:5:484225:9
GUID0
Full ReferenceFröbisch, Jörg (2006) Locomotion in derived dicynodonts (Synapsida, Anomodontia): a functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus. Canadian Journal of Earth Sciences, 43 (9) 1297-1308 doi:10.1139/e06-031
Plain TextFröbisch, Jörg (2006) Locomotion in derived dicynodonts (Synapsida, Anomodontia): a functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus. Canadian Journal of Earth Sciences, 43 (9) 1297-1308 doi:10.1139/e06-031
In(2006, September) Canadian Journal of Earth Sciences Vol. 43 (9) Canadian Science Publishing
Abstract/Notes A general locomotor model for derived dicynodont anomodonts is proposed on the basis of a functional analysis of the pelvic girdle and entire hind limb of the medium-sized Middle Triassic dicynodont Tetragonias njalilus. The joint mobility of the hind limb is examined, and a hind limb step cycle is reconstructed. The data provided in this case study indicate that Tetragonias adopted a highly adducted (upright) hind limb posture during stance and most of its stride. Nevertheless, lateral undulation of the vertebral column must also have contributed to the locomotion of dicynodonts. Character optimization of the traits associated with an upright posture of the hind limb shows a gradual evolution of dicynodont locomotion. The evolution of an upright hind limb posture has occurred several times independently in a number of amniote clades. Within synapsids, the Anomodontia, Dinocephalia, and Theriodontia acquired a parasagittal hind limb gait already as early as the late Paleozoic and early Mesozoic, prior to its evolution in mammals. This phenomenon has previously been explained as being related to an increase in body size as a response to increased biomechanical stress on the limb. This scenario appears plausible with respect to dicynodonts because of the occurrence of megaherbivore-sized taxa in the Triassic, but this study shows that a parasagittal gait had already evolved in the medium-sized basal kannemeyeriiform Tetragonias. Therefore, the vertical support of the body by the hind limbs in medium-sized dicynodonts could have allowed the evolution of the large Triassic taxa in the first place.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 12, 2025 06:57:29
Go to top of page