Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Coish, Raymond, Kim, Jonathan, Morris, Nathan, Johnson, David (2012) Late stage rifting of the Laurentian continent: evidence from the geochemistry of greenstone and amphibolite in the central Vermont Appalachians1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology. Canadian Journal of Earth Sciences, 49 (1) 43-58 doi:10.1139/e11-013

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLate stage rifting of the Laurentian continent: evidence from the geochemistry of greenstone and amphibolite in the central Vermont Appalachians1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology.
JournalCanadian Journal of Earth Sciences
AuthorsCoish, RaymondAuthor
Kim, JonathanAuthor
Morris, NathanAuthor
Johnson, DavidAuthor
Year2012 (January)Volume49
Issue1
PublisherCanadian Science Publishing
DOIdoi:10.1139/e11-013Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID484756Long-form Identifiermindat:1:5:484756:8
GUID0
Full ReferenceCoish, Raymond, Kim, Jonathan, Morris, Nathan, Johnson, David (2012) Late stage rifting of the Laurentian continent: evidence from the geochemistry of greenstone and amphibolite in the central Vermont Appalachians1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology. Canadian Journal of Earth Sciences, 49 (1) 43-58 doi:10.1139/e11-013
Plain TextCoish, Raymond, Kim, Jonathan, Morris, Nathan, Johnson, David (2012) Late stage rifting of the Laurentian continent: evidence from the geochemistry of greenstone and amphibolite in the central Vermont Appalachians1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology. Canadian Journal of Earth Sciences, 49 (1) 43-58 doi:10.1139/e11-013
In(2012, January) Canadian Journal of Earth Sciences Vol. 49 (1) Canadian Science Publishing
Abstract/Notes Metamorphosed mafic rocks from west-central Vermont crop out in tectonic slices of the Stowe Formation within the Rowe–Hawley Belt of New England. The rocks include greenstone and amphibolite, which are interpreted to have been basaltic flows and gabbroic intrusions, respectively. Even though the rocks have been metamorphosed to greenschist or amphibolite facies, their igneous origins can be deciphered through careful use of geochemistry. Three geochemical types have been identified. Type 1 and 2 samples have geochemical characteristics similar to those found in mid-ocean ridge basalts (MORB), except that they have slightly elevated light rare-earth element (LREE) concentrations and are higher in Nb/Y ratios. Their Nb/Y ratios are similar to basalts found in Iceland and parts of the Afar region of the East African Rift. Types 1 and 2 are similar to metabasalts of the Caldwell and Maquereau formations in southern Quebec. The less-common type 3 samples have highly enriched LREE and are high in Nb/Y and Zr/Y ratios, similar to some alkali basalts from Afar and Iceland. Detailed analysis of the geochemistry suggests that greenstones and amphibolite from the Stowe Formation formed as basaltic eruptions during very late stages in rifting of the Rodinian continent that eventually led to formation of the Iapetus Ocean. This interpretation is consistent with tectonic models of the Vermont and Quebec Appalachians.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 14, 2025 12:15:08
Go to top of page