Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Oviatt, N.M., Gleeson, S.A., Paulen, R.C., McClenaghan, M.B., Paradis, S. (2015) Characterization and dispersal of indicator minerals associated with the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 52 (9) 776-794 doi:10.1139/cjes-2014-0108

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleCharacterization and dispersal of indicator minerals associated with the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada
JournalCanadian Journal of Earth Sciences
AuthorsOviatt, N.M.Author
Gleeson, S.A.Author
Paulen, R.C.Author
McClenaghan, M.B.Author
Paradis, S.Author
Year2015 (September)Volume52
Issue9
PublisherCanadian Science Publishing
DOIdoi:10.1139/cjes-2014-0108Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID485163Long-form Identifiermindat:1:5:485163:3
GUID0
Full ReferenceOviatt, N.M., Gleeson, S.A., Paulen, R.C., McClenaghan, M.B., Paradis, S. (2015) Characterization and dispersal of indicator minerals associated with the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 52 (9) 776-794 doi:10.1139/cjes-2014-0108
Plain TextOviatt, N.M., Gleeson, S.A., Paulen, R.C., McClenaghan, M.B., Paradis, S. (2015) Characterization and dispersal of indicator minerals associated with the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 52 (9) 776-794 doi:10.1139/cjes-2014-0108
In(2015, September) Canadian Journal of Earth Sciences Vol. 52 (9) Canadian Science Publishing
Abstract/Notes A glacial dispersal study was conducted around a subcropping Pb–Zn deposit (O28) in the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada, with the intent of characterizing and documenting the indicator minerals and their dispersal from a known orebody. Mapping of striations adjacent to deposit O28, and throughout the Pine Point district, along with observed glacial stratigraphy, indicate that there are three phases of ice flow that have affected the Pine Point district. Sphalerite, galena, and pyrite were identified in mineralized bedrock samples at deposit O28, and sphalerite and galena were recovered from the sand fraction of till samples up to 500 m from the mineralized subcrop. The majority of sphalerite and galena grains recovered from till samples down-ice of deposit O28 were 0.25–0.5 mm in size. Size and morphology of sphalerite grains in till demonstrate relative proximity to their bedrock source, with the largest and more angular grains being closer to the ore zone (<50 m) whereas smaller and more rounded grains occur further down-ice (∼250 m). The paragenesis, textures, major-element concentrations, and S and Pb isotopic compositions of bedrock samples from deposit O28 and from newly drilled core from four other deposits were characterized. Concentrations of Zn in bedrock sphalerite grains range from 43.95 to 67.48 wt.%, concentrations of S range from 32.03 to 34.01 wt.%, and concentrations of Fe range from 0.02 to 16.94 wt.%. The Fe concentration in bedrock sphalerite decreases from east to west across the district. Concentrations of S in galena grains in bedrock range from 12.50 to 14.00 wt.% and have a bimodal distribution. Generally, the geochemistry of sphalerite grains recovered from till were statistically similar to bedrock grains recovered from deposits O28 and L65. Major-element concentrations were statistically the same between the sphalerite grains recovered from till and the honey-brown and cleiophane varieties in the bedrock samples. Galena grains recovered from till samples were similar to the cubic and fracture-fill varieties of grains recovered from bedrock in the R190 and M67 deposits. Sulphur isotopic values for sphalerite grains from bedrock range from 20.6‰ to 24.2‰, while those from till samples range from −5.3‰ to 24.4‰. Lead isotopic ratios for galena grains from bedrock and till samples had very little variation, which is a characteristic of the Pine Point district. The S and Pb isotopic studies as well as major-element geochemistry suggest that indicator minerals derived from Pine Point-type mineralization can be distinguished from those sourced from other types of carbonate-hosted mineralized systems (e.g., Cordilleran zinc–lead deposits) and that the methods here can be used as exploration tools for identifying MVT deposit provenance or potential. The results of this study present criteria and highlights additional methods for exploration of MVT deposits in glaciated terrain.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 21, 2025 16:50:00
Go to top of page