Vote for your favorite mineral in #MinCup25! - Carpathite vs. Leucite
Brace for oddness in a match between one of the very few hydrocarbon minerals carpathite and the temperature-flipping mineral leucite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Jiao, Shujuan, Fitzsimons, Ian C W, Zi, Jian-Wei, Evans, Noreen J, Mcdonald, Brad J, Guo, Jinghui (2020) Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 61 (1) doi:10.1093/petrology/egaa023

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleTexturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton
JournalJournal of Petrology
AuthorsJiao, ShujuanAuthor
Fitzsimons, Ian C WAuthor
Zi, Jian-WeiAuthor
Evans, Noreen JAuthor
Mcdonald, Brad JAuthor
Guo, JinghuiAuthor
Year2020 (September 18)Volume61
Issue1
PublisherOxford University Press (OUP)
DOIdoi:10.1093/petrology/egaa023Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID532371Long-form Identifiermindat:1:5:532371:9
GUID0
Full ReferenceJiao, Shujuan, Fitzsimons, Ian C W, Zi, Jian-Wei, Evans, Noreen J, Mcdonald, Brad J, Guo, Jinghui (2020) Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 61 (1) doi:10.1093/petrology/egaa023
Plain TextJiao, Shujuan, Fitzsimons, Ian C W, Zi, Jian-Wei, Evans, Noreen J, Mcdonald, Brad J, Guo, Jinghui (2020) Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 61 (1) doi:10.1093/petrology/egaa023
In(2020, September) Journal of Petrology Vol. 61 (1) Oxford University Press (OUP)
Abstract/NotesAbstract
Sapphirine-bearing UHT granulites from the Dongpo locality in the Khondalite Belt of the North China Craton have been comprehensively characterized in terms of petrology, mineral chemistry, metamorphic evolution and zircon geochronology. However, the precise timing of the peak-UHT metamorphism and other key stages in the P–T–t evolution remain controversial due to the complexity of multiple metamorphic overprints and the lack of petrographic context for zircon age data. In this study, monazite from four samples of the Dongpo granulite are divided into six groups based on chemical composition and textural context, and dated (in-situ SHRIMP and LA–ICP–MS U–Pb). An age population of 1·91–1·88 Ga was obtained from high-Y cores of monazite inclusions in garnet (Group 1) and on grains in the rock matrix (Group 2). The maximum age of c.1·91 Ga is interpreted as the minimum timing for prograde metamorphism before UHT metamorphism (M1). An age population of 1·90–1·85 Ga was obtained from low-Y domains of monazite inclusions (Group 3) and of matrix grains (Group 4). Combined with previous zircon dating results, the age population from low-Y Mnz constrains the timing and duration of the UHT metamorphism to 1·90–1·85 Ga and 50 (±15) million years, respectively. The large (50 m.y.) age spread is interpreted to reflect continuous monazite formation, and it is consistent with the slow post-peak near-isobaric cooling stage (M2). An age of c.1·86 Ga was obtained from monazite in textural contact with sapphirine/spinel + plagioclase intergrowths (Group 5), which is interpreted as the timing of the subsequent decompression–heating stage (M3). The younger age clusters at c.1·80 and 1·77 Ga, obtained from Th-rich monazite rims (Group 6) and one single Th-depleted monazite in textural contact with matrix biotite, respectively, indicate dissolution–reprecipitation and new monazite growth from fluid released by crystallizing anatectic melt during retrogression. These results, along with the previous 1·93–1·91 Ga data for UHT metamorphism, suggest that there was a very long-lived Paleoproterozoic UHT metamorphism (1·93–1·85 Ga) in the Khondalite Belt of the North China Craton. This supports the large hot orogeny model for the generation of Paleoproterozoic UHT metamorphism in the Khondalite Belt during the amalgamation of the Nuna supercontinent.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 6, 2025 17:40:17
Go to top of page