Vote for your favorite mineral in #MinCup25! - Silver vs. Baryte
Are you ready for beautiful utility as sparkling silver competes against hefty baryte?
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Martin, P P, Launer, G (1988) Temperley-Lieb operator formalism for Zqsymmetric models and solvable submanifolds. Journal of Physics A: Mathematical and General, 21. doi:10.1088/0305-4470/21/21/001

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleTemperley-Lieb operator formalism for Zqsymmetric models and solvable submanifolds
JournalJournal of Physics A: Mathematical and General
AuthorsMartin, P PAuthor
Launer, GAuthor
Year1988 (November 7)Volume21
PublisherIOP Publishing
DOIdoi:10.1088/0305-4470/21/21/001Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID5778718Long-form Identifiermindat:1:5:5778718:9
GUID0
Full ReferenceMartin, P P, Launer, G (1988) Temperley-Lieb operator formalism for Zqsymmetric models and solvable submanifolds. Journal of Physics A: Mathematical and General, 21. doi:10.1088/0305-4470/21/21/001
Plain TextMartin, P P, Launer, G (1988) Temperley-Lieb operator formalism for Zqsymmetric models and solvable submanifolds. Journal of Physics A: Mathematical and General, 21. doi:10.1088/0305-4470/21/21/001
In(n.d.) Journal of Physics A: Mathematical and General Vol. 21. IOP Publishing


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 5, 2025 07:16:31
Go to top of page