Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kigai, Ingrid N. (2019) The genesis of agates and amethyst geodes. The Canadian Mineralogist, 57 (6) 867-883 doi:10.3749/canmin.1900028

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe genesis of agates and amethyst geodes
JournalThe Canadian Mineralogist
AuthorsKigai, Ingrid N.Author
Year2019 (November 30)Volume57
Issue6
PublisherMineralogical Association of Canada
DOIdoi:10.3749/canmin.1900028Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID65626Long-form Identifiermindat:1:5:65626:5
GUID0
Full ReferenceKigai, Ingrid N. (2019) The genesis of agates and amethyst geodes. The Canadian Mineralogist, 57 (6) 867-883 doi:10.3749/canmin.1900028
Plain TextKigai, Ingrid N. (2019) The genesis of agates and amethyst geodes. The Canadian Mineralogist, 57 (6) 867-883 doi:10.3749/canmin.1900028
In(2019, November) The Canadian Mineralogist Vol. 57 (6) Mineralogical Association of Canada
Abstract/NotesAbstract
Practically all aspects of agate genesis generate debate. The time is ripe to clarify the most important enigmas concerning the environments of formation of agates and the related famous amethyst geodes of Brazil and Uruguay. Agates form over a wide range of temperatures, from those of basaltic and andesitic melts (about 1100 °C) down to about 50 °C, and at rather low pressures. Their formation in liquid mafic magmas is indicated by a correlation between (1) the orientation of amygdules and the inclination of onyx banding in them and (2) the attitude of amygdules in the lava flow layers. The correlation arises because lava moves at a different rate close to and far from the upper and lower rims of a flow. The alkaline supercritical fluid fills gas vesicles in lavas and dissolves silica, mainly, from ambient lava or rock to produce a silica sol. If the pressure on the fluid causes percolation of water from amygdules, the sol coagulates on the walls of the vesicle to form a concentric lining. If the pressure in amygdules falls below the maximum osmotic pressure of a sol (about 0.1 MPa for a silica sol), percolation of fluid stops, and coagulation leads to the formation of horizontal onyx banding. Multiple repetitions of precipitation of various gel layers can be caused by overlapping fresh flows upon the cooling older agate-bearing lava flow. In a submarine setting, phase separation of the fluid and the formation of a film of gel between vapor (or diluted solution) and brine stimulate the osmotic processes, which result in growth of hollow membrane tubes and branching moss-like arrays at the bottom of amygdules. Some agates exhibit numerous channels as a result of repeated extrusion of fluid or gel from inner zones to the periphery of amygdules that were compressed under the burden of new flows. Previously, such channels were interpreted to be feeding channels for silica supply in amygdules. Periodic compression of amygdules after percolation of fluid from them requires no additional supply of silica because the volume of the amygdules is reduced in proportion to the loss of fluid. The concentric and horizontal banding and mossy textures of agates from the lithophysae of felsic volcanic rocks were created during active volcanism as well. The agates from dissolution-induced cavities in carbonate rocks and the famous amethyst druses of Brazil and Uruguay formed at the moderate temperatures associated with low-grade burial metamorphism, as indicated by the lack of moss textures and onyx banding.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 20, 2025 11:30:04
Go to top of page