Vote for your favorite mineral in #MinCup25! - Baryte vs. Hematite
It's a heavyweight match between industrial powerhouses as soft #baryte competes against rusty red #hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hughes, G. S., McGreavy, C., Merkin, J. H. (1980) A theoretical model of the manfacture of reaction-bonded silicon nitride with particular emphasis on the effect of ambient reaction temperature and compact size. Journal of Materials Science, 15. 2345-2353 doi:10.1007/bf00552327

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA theoretical model of the manfacture of reaction-bonded silicon nitride with particular emphasis on the effect of ambient reaction temperature and compact size
JournalJournal of Materials Science
AuthorsHughes, G. S.Author
McGreavy, C.Author
Merkin, J. H.Author
Year1980 (September)Volume15
PublisherSpringer Science and Business Media LLC
DOIdoi:10.1007/bf00552327Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID9984679Long-form Identifiermindat:1:5:9984679:2
GUID0
Full ReferenceHughes, G. S., McGreavy, C., Merkin, J. H. (1980) A theoretical model of the manfacture of reaction-bonded silicon nitride with particular emphasis on the effect of ambient reaction temperature and compact size. Journal of Materials Science, 15. 2345-2353 doi:10.1007/bf00552327
Plain TextHughes, G. S., McGreavy, C., Merkin, J. H. (1980) A theoretical model of the manfacture of reaction-bonded silicon nitride with particular emphasis on the effect of ambient reaction temperature and compact size. Journal of Materials Science, 15. 2345-2353 doi:10.1007/bf00552327
In(n.d.) Journal of Materials Science Vol. 15. Springer Science and Business Media LLC


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 19, 2025 09:31:44
Go to top of page